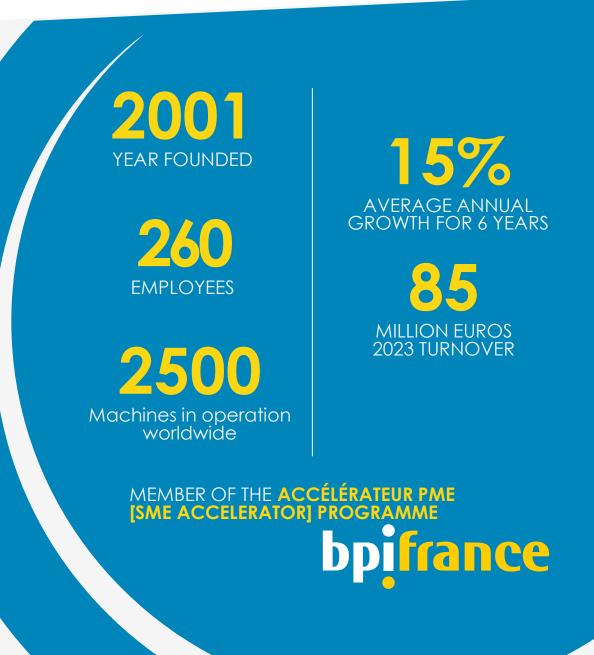
# **IPELLENC**ST

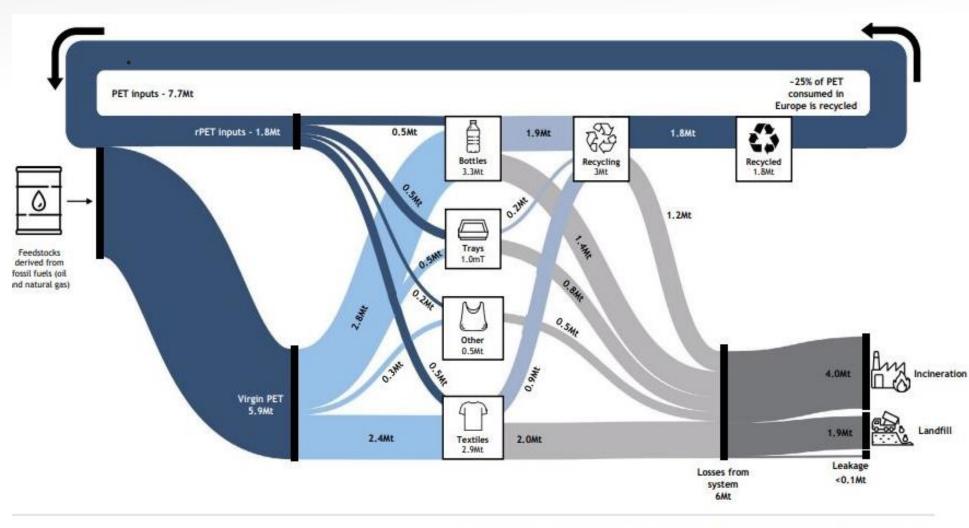
## PET SORTING FOR CIRCULARITY Solutions and perspectives

### PETCORE SORTING WEBINAR


ANTOINE BOURELY, CHIEF SCIENTIFIC OFFICER, MARCH 19, 2024

PETCORE SORTING WEBINAR 2024

### **PELLENC ST IN A NUTSHELL**


- Manufacturer of optical sorters
- Leader in France, Japan, Australia,...
- International reach
- Independent company
- Main customers:
  - Material Recovery Facilities
  - Plastic recyclers
  - Textile sorters / recyclers

### A mid-cap company!



PETCORE SORTING WEBINAR 2024

### PET Circularity: situation in 2020 in Europe



#### Comments:

- Circularity = 25%
- Bottle rPET also used
  for trays & textiles
- **Trays** poorly collected (20%), little recycled
- Textile recycling mainly post-industrial

Source: SystemIQ, Eunomia, Zero Waste Europe, Bryan, Garnier & Co IRIS



### How Can PET Sorting Help Circularity

Status on Circularity: only clear food bottles and some white opaque bottles

#### Sorting with NIR/VIS spectroscopy to separate:

- Monolayer trays from bottles (Bottle to Bottle recycling)
- Mono/multi layer trays (tray to tray recycling)
- Food grade white opaque bottles (create circularity)
- Refine color sorting: clear vs light blue, opaque vs transparent
- Detect fully sleeved bottles

#### Sorting combining NIR/VIS with AI or Watermarks to separate:

- Food grade bottle streams (for countries without DRS)
- Non-food grade bottle streams for non-food brands
- Food grade trays/thermoforms from other trays







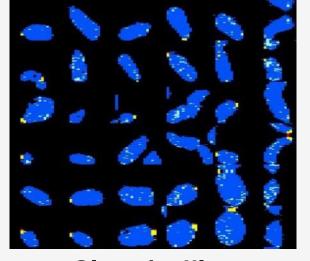


PETCORE SORTING WEBINAR 2024

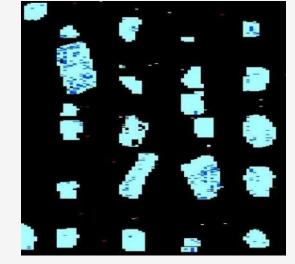
### Separating Monolayer Trays from Bottles

- **BtoB Recycling: key to avoid lowering quality of rPET bottles** (Trays make rPET bottles brittle)
- **Differences**: same chemical composition but use a different process:
  - trays are thermoformed
  - bottles are injected and blow-molded
- **Sorting challenge :** the spectral difference is very small









### Sorting Bottles and Trays With NIR

**NIR** images

(pixel data before filtering)



**Clear bottles** 



Clear monolayer trays

| Sorting mode                   | Bottles ejected  | Trays ejected |
|--------------------------------|------------------|---------------|
| Mode#1: eject bottles (1 step) | <b>92 - 94</b> % | < 5%          |
| Mode #2: eject trays (1 step)  | < 6%             | 95%           |



### Separate Multilayer vs Monolayer Trays

This separation is key for tray-to-tray recycling:

- Sorting task: obtain a clean monolayer stream
- Sorting process: 1 step

eject multilayer trays and contaminants

#### Multilayer stream



• **Results using NIR only:** (validated @ Wellman France 2021)

| Final purity on monolayer trays | 91.6% |
|---------------------------------|-------|
| Final loss of monolayer trays   | 2.4%  |

Monolayer stream





### A Circular Success Story

#### How to recycle white Opaque PET Stream

- Opaque PET contains TiO<sub>2</sub>
- No recycling outlet in 2017

#### Recycling strategy (CITEO 2021):

- Use the fact that most food grade bottles contain a black carbon layer
- NIR advanced settings to:
  - separate opaque vs transparent
  - separate opaque food (carbon layer) vs. opaque non-food



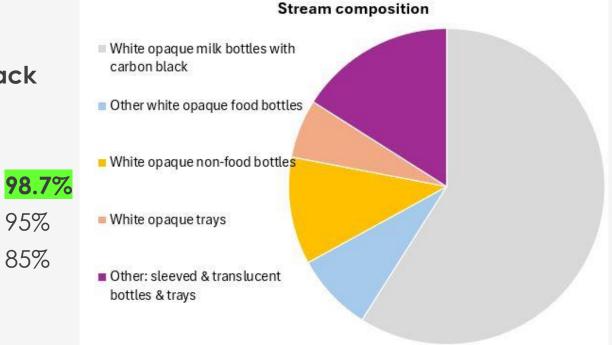
Carbon black (food grade)

No carbon black

=> A circular loop created



### Food White Opaque PET Stream: Industrial Sorting Result


Sorting task & Process (1 step): Extract white opaque food bottles with carbon black

#### Sorting Result:

- Purity of food white opaque stream :
- Recovery of bottles with carbon black:

Impact: grey color after recycling

• Final recovery of food bottles:

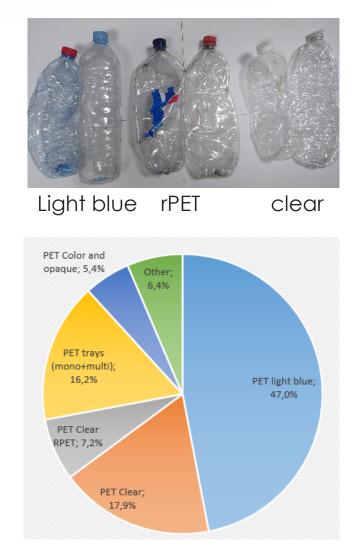






### Fine Color Sorting: Light Blue vs Clear

**Sorting task:** separate light blue vs clear PET (required in Italy and Belgium)


Sorting Challenge: rPET is clear, but with a greyish shade

### Process (1 step):

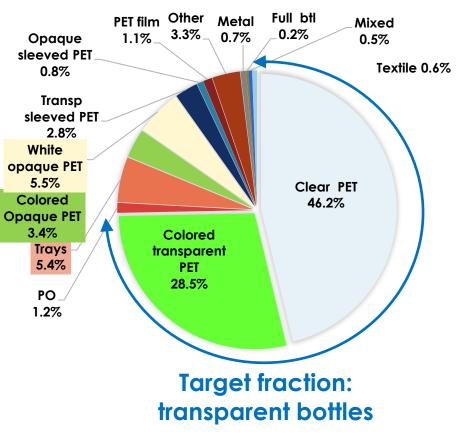
- Extract light blue bottles from mixed PET
- Throughput: 7.5 tph on 2800 mm width

### Sorting result:

- Efficiency on light blue: 94%
- Purity on light blue: 94%



### Fine Color Sorting: Opaque vs Transparent


**Sorting task:** remove **trays & opaque bottles** (white or colored) from transparent bottle streams

### Process (3 steps + recovery):

- Step1: extract transparent bottles (clear & col.)
- Steps 2 & 3: remove opaque bottles
- Recovery: recover transparent bottles from losses

### Sorting Result:

- Transparent PET purity: **99.4%**
- Transparent losses: < 2%
- PET Opaque & tray purity: **91%**



#### Input stream composition

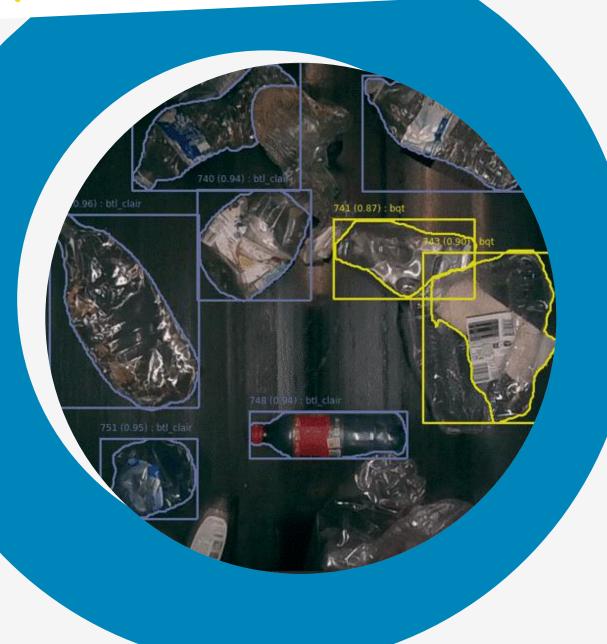


### **Full Sleeved PET**

Widespread to avoid glue): 14 % of bottles

#### Sorting task:

- recognize the product as a sleeved bottle
  → OK: NIR signal goes through the sleeve
- Sort the product towards the clear PET stream:
  → Not OK: color under sleeve not visible


#### Sorting Results:

- PE, PP, LDPET, PS, PVC detectable as sleeve + bottle
  - $\rightarrow$  downcycled to colored stream
- PETG (thin layer) confused with opaque PET
  - $\rightarrow$  downcycled to opaque stream

|           |              | 1                        |
|-----------|--------------|--------------------------|
| Thickness | Slee<br>(PET | re<br>G/PS/LDPET)<br>PET |







## Food vs non-food PET

Digital Watermarks and Artificial Intelligence

### What Are Digital Watermarks (DW)

**The marker** is a high-resolution pattern (150 dpi) that can be:

- Printed (2D) or Moulded (3D)all around packaging
- Causes no recycling issues (natural elimination during recycling), unlike chemical tracers
- Wide encoding capability (like a QR code)

### **Challenges:**

- Expensive equipment for sorting (lightings, computers, cameras...)
- Licensing fees
- International standardisation needed
- Data governance

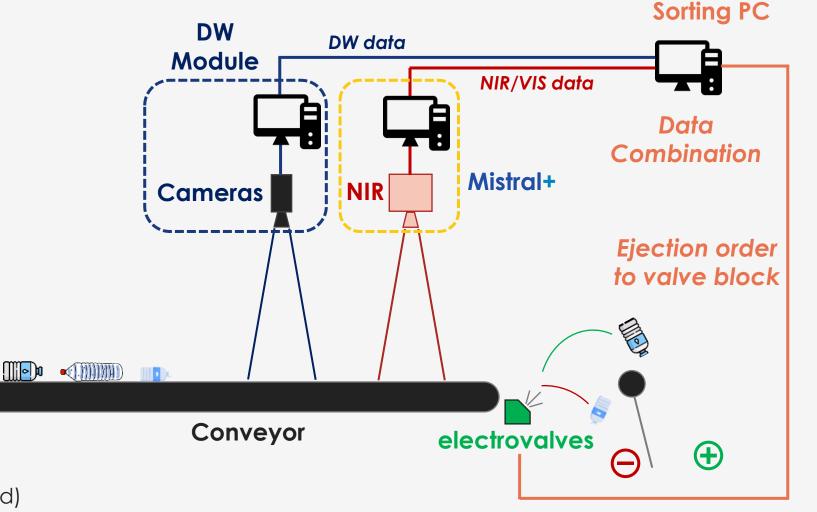
#### Printed version (2D)



Looks Like This Performs Like This

#### Moulded Version (3D)




Images courtesy of P&G / Digimarc/ Logoplaste



### **DW & NIR: A Necessary Combination**

#### Why combine?

- To allow mixed sorting of marked & unmarked SKUs
- To detect full object area, for dirty, partially marked or damaged packaging



Example on difficult objects



Green: DW and NIR detected Yellow: NIR detected (No DW detected)

### Industrial Sorting Test with DW

Place: Wellman Indorama, Verdun Time: Jan-Feb 2023

#### Input stream:

DW marked products mixed with waste, sorted in MRFs, prepared in bales

**Process**: 2 steps eject marked non-food bottles Industrial conditions: 3 m/s, 4 tph

#### Sorting Results:

400.000 bottles ejected 95 % Efficiency = 95% non-food bottles ejected (88% in first step)



Input bales: 20% DW



distorted bottles



### **Industrial Sorting Test with AI**

Place: Wellman Indorama, Verdun Time: March-Oct 2023

#### Input stream:

Natural PET stream from MRFs Average non-food PET in input : 8%

**Process**: 1 step eject non-food bottles, at 4 tph, 3 m/s Al algorithms designed by Pellenc ST team Extensive database built: 100.000 images Challenging differences, especially without labels

#### Sorting result:

54% non-food ejected / 6 % downcycling food to non-food Final non-food content  $\approx$  4%, complies with specs



Food Non-food





### How does AI compare to Watermarks?

| Who                             |     | Output:<br>NF share | Eject | Efficiency<br>(%) | Downcycled<br>F to NF (%) |
|---------------------------------|-----|---------------------|-------|-------------------|---------------------------|
| Polyperception                  | 13% | <5%                 | F     | 67.5%             | 32.5%                     |
| Pellenc ST (with AI)            | 8%  | < 5%                | NF    | 54%               | 6%                        |
| Pellenc ST & Digimarc (with DW) | 20% | 1%                  | NF    | 95%               | < 2 %                     |

#### Major learnings:

Al sorting works: Al achieves customer specifications today

tradeoff: **significant downcycling** of food grade into non-food grade

#### DW sorting performance is far above AI:

when available, it will raise quality and reduce losses

For trays, food vs non-food sorting also proven in Copenhagen (Holy Grail 2.0 phase 2)

### Takeaway: What Can We Achieve?

| Sorting task                          | NIR/VIS                  | NIR/VIS + AI | NIR/VIS +<br>DW |
|---------------------------------------|--------------------------|--------------|-----------------|
| Trays vs bottles                      | YES                      | YES          | YES             |
| Mono vs multilayer trays              | YES                      | YES          | YES             |
| Food grade white opaque bottles       | YES                      | YES          | YES             |
| Fine color sorting                    | YES                      | YES          | YES             |
| Opaque vs transparent colored bottles | YES                      | YES          | YES             |
| Sleeved bottles                       | YES, with<br>downcycling | maybe        | YES             |
| Clear food grade bottle stream        | NO                       | YES, with    | YES             |
| Create non-food grade bottle stream   | NO                       | downcycling  | YES             |
| Food grade trays vs non-food grade    | NO                       | maybe        | YES             |

**Caveat:** With AI: consider costs of database updates

With DW: consider costs of hardware and licenses & wait for standardized solution

# **IPELLENC**ST

PARTENAIRE DE LA PERFORMANCE CIRCULAIRE

Restons connectés !

125 rue François Gernelle BP124 84 124 Pertuis Cedex 4 <u>contact@pellencst.com</u> +33 4 90 09 47 90

www.pellencst.com

###