PET materials and articles in which the recycled plastic is used behind a **Functional Barrier**. 3rd Monitoring Report

Monitoring Report by Article 13 of Regulation (EU) 2022/1616. 10th of October 2024.

Updated on October 16th. Text correction

Contents

Introduction	2
Forewords	3
Description of the Novel Recycling Technology- Art. 13(5)(a)	3
Capability of the process to produce safe materials - Art. 13(5)(b)	4
Most occurring substances - Art. 13(5)(c)	8
Decontamination efficiency – Art. 13(5)(c)	8
Contaminating materials in the plastic input - Art. 13(5)(d)	10
Origin of the identified contaminants- Art. 13(5)(e)	10
Measure or estimation of migration - Art. 13(5)(f)	10
Sampling strategy and analytical method - Art. 13(5)(g) and Art. 13(5)(h)	18
Discrepancies between input and output - Art. 13(5)(i)	18
Discussion of differences from previous report- Art. 13(5)(j)	18
Annex I- Equivalence of simulation approaches	19
Annex II- Simulated migration for different BA structures	21
Annex III -Substances with Molecular Weight less than 1000 Da, and relevant occur-	
rence, found in the input material	27
Annex IV - Substances with Molecular Weight less than 1000 Da, and relevant occur-	~ 7
rence, found in the output material.	
Annex V: Most occurring substances	
Annex VI: Summary of testing methods	27

Introduction

The novel technology for PET Functional barrier was notified as required under Article 10(2) and 10(3) of Commission Regulation (EU) 2022/1616 on 15th September 2023.

Article 13 of Commission Regulation (EU) 2022/1616 States the following:

"a recycler operating a decontamination installation in accordance with Article 11 of the regulation shall monitor the average contaminant level on the basis of a robust sampling strategy which samples the plastic input batches and the corresponding plastic output batches".

The enclosed report provides a summary of the data forthcoming from the monitoring, based on the latest information from all installations using the novel technology received in accordance with paragraph 3 along with the information required by Article 13(5) of the Regulation.

This report should be read in conjunction with the Novel Technology notification dossier referred as "PET materials and articles in which the recycled plastics is used behind a Functional Barrier", submitted on 5 April 2023.

It is important to note that the safety and integrity of these materials is usually determined by extraction and/or migration and not by direct analysis of the polymer. The latter, although required by Regulation 2022/1616, is known to pose numerous technical problems in terms of obtaining reliable and reproducible results, it can generate substances that cannot be distinguished from contaminants and has therefore not been commonly used and has not been subjected to proficiency testing as reported in the scientific literature (Nerin et al., 2022)¹

The results presented in this report are subject to further investigation for accuracy due to the large inter-laboratory and inter-sample variation observed. Significant sample degradation during analysis cannot be excluded at this time.

The data presented in this report are based on the measurements performed by third-party laboratories, which were contracted by the members of the Functional Barrier (FB) Consortium formed by PET-CORE-EUROPE and EuPC.. The data provided is the property of the FB consortium and cannot be copied, reproduced, or distributed without their prior written consent. The FB consortium is not responsible nor liable for any errors or inaccuracies that may have occurred during the measurement process by the third-party laboratories. The data are provided for informational purposes only and do not constitute any endorsement or recommendation by FB Consortium.

¹ <u>(PDF) Guidance in selecting analytical techniques for identification and quantification of non-inten-</u> tionally added substances (NIAS) in food contact materials (FCMS) (researchgate.net)

Forewords

The present document constitutes the report of the 3rd monitoring period for the Novel Recycling Technology "PET materials and articles in which the recycled plastic is used behind a Functional Barrier" for which a notification has been filed on April 5, 2023.

The present document is delivered in order to fulfil the requirements of Article 13: "Monitoring and reporting of contamination level".

In addition of the original notification dossier and the subsequent 1st and 2nd monitoring reports, the present monitoring report contains, among others,

- An updated calculation of the potential migration of surrogate contaminants, replacing those reported in the paragraph entitled "Calculation of migration through a Functional Barrier", of the original notification dossier, carried out with the use of the commercial migration modelling software AKTS 365SML, Version 6.7 (AKTS- Sierre, Switzerland);
- 2. An updated list of the first 20 most occurring substances in the input materials, along with the decontamination efficiency calculated for selected representative substances;
- 3. The calculated specific migration in simulant D2 (95% ethanol) at time/temperature conditions of 10 days at 20°C, 10 days at 40°C and at 365 days 25°C, for three of the above mentioned most occurring substances, and two substances considered representative of the contamination, calculated with the above mentioned migration modelling software. The selected substances are: benzene (CAS N 71-43-2), limonene (CAS N 138-86-3), 2,2-Bis(4-hydroxyphenyl)propane (aka BPA) (CAS N 80-05-7), Terephthalic acid bis(2-ethylhexyl) ester (CAS N 6422-86-2), and Phthalic acid bis(2-ethylhexyl) ester (CAS N 117-81-7). Benzene and BPA were chosen as substances with high hazard profile, limonene represents a common contaminant from food, while, Terephthalic acid bis(2-ethylhexyl) ester and Phthalic acid bis(2-ethylhexyl) ester are indicators of contamination from plastics other than PET (e.g. PVC)
- 4. The actual specific migration of the above mentioned five substances in simulant D2 (95% ethanol), from sheets containing 100% RPET in the B layer and having A/B/A ratio of 7.5%/85%/7.5%, at time/temperature conditions of 10 days at 20°C, 10 days at 40°C and 10 days at 60°C

The paragraphs below contain the information required by Article13(5) of Regulation (EU) 2022/1616, covering the period from 10th April 2024 to 10th October 2024.

Description of the Novel Recycling Technology- Art. 13(5)(a)

No modifications occurred in the Novel Recycling Technology, as it was described in the original notification dossier.

The Novel Recycling Technology, consists in the use of recycled PET (RPET) as central layer of structures A/B/A, where layer B is composed by RPET or blends of RPET with virgin PET, and layers A consist of virgin PET.

The manufacturing of A/B/A structures include a combination of some of the following processes:

- A drying and crystallization phase of the washed flakes, which is operated usually under stirring and air flow, at temperature of 140-160°C, generated by friction or IR, for a residence time up to 6 hours.
- An extrusion phase, where flakes are melted to produce the rPET B layer with or without application of vacuum. The temperature profile is usually 270-290°C. When vacuum is applied, the vacuum conditions are typically below 100 mbar.
- The coextrusion step, in which the A layers are applied in a die². In this case the rPET of the future B layer comes in contact with the virgin PET (or mixture between virgin and mechanically recycled PET originated from a process that was object of a positive opinion delivered by EFSA) of the future A layers, at a temperature of typically 275-290°C. A 3-layer sheet (A/B/A) comes out from the coextrusion process and it is cooled down in a rolled stack press.
- The final thermoforming phase, in which the sheet is converted into trays. The sheet is heated in an oven to a temperature of 120-130°C, and the tray is formed through the application of pressure and vacuum in a mould. The total cycle takes 2-3 seconds. The tray is then immediately cooled down to an average temperature of around 30°C.

The following configurations (reported in Table 1) of processes are covered by the Novel Technology dossier:

Configurations	figurations Crystallizing/drying Extrusion		Degassing
X1	yes	Single Screw	No
X2	yes	Single Screw	Yes
Y1	yes	Twin Screw Co-Rotating	Yes
Y2 no		Twin Screw Co-Rotating	Yes
w	no	Single screw and satellitar	Yes

Table 1: configurations of the equipment covered by the notification.

In all the processes operating the equipment reported in Table 1, washed and dried RPET flakes are supplied to converters, accompanied by suitable specifications, and are co-extruded to produce the A/B/A structures with different A/B/A ratio and different thickness.

In case more information on the process is needed we suggest consulting the original notification dossier at <u>https://www.petcore-europe.org/functional-barrier.html</u>

Capability of the process to produce safe materials - Art. 13(5)(b)

In the original notification dossier the data of decontamination capability calculated from challenge tests carried out in actual processes representing the equipment configurations of Table 1, were used to determine the maximum concentration of RPET in the B layer at which the safe level of migration of surrogates is met.

² Kostic, Milivoje & Reifschneider, Louis. (2006). Design of Extrusion Dies. Encyclopaedia of Chemical Processing. (PDF) Design of Extrusion Dies (researchgate.net)

The above mentioned commercially available migration simulation software AKTS365SML Version 6.7 was used for that purpose. In this 3rd report we have updated that calculation by operating the following improvements:

- 1. The number of structures on which the migration simulation was made increased from 3 to 5 (adding the total thickness of 120 micron and 700 micron)
- 2. The A/B/A ratio of 7.5/85/7.5 was added
- 3. The percentage of 30% of RPET in the B layer was added
- 4. The density of PET in the melt during the migration simulation was set at 1.2 g/cm3 (instead of 1.4 g/cm3 as in the original notification dossier). This was done because the density of Polyethylene Terephthalate (PET) in its melt state at 280°C typically ranges from 1.15 to 1.35 g/cm³. At elevated temperatures, like 280°C, PET's density decreases compared to its solid-state density due to the increased molecular mobility and expansion in the melt phase ³
- 5. The density of PET in the solid phase during the migration simulation was set at 1.375 g/cm3 (instead of 1.4 g/cm3 as in the original notification dossier). This value is in line with the most updated parameters suggested by EFSA while conducting migration simulation calculations⁴
- 6. The parameters and conditions chosen for the migration simulation are summarized in Table 2. In this Table, the "realistic" conditions correspond to the choice in the migration software of an equation ("Piringer realistic equation") that does not include overestimation factors. This choice was made to avoid excessive and unrealistic overestimation of the diffusion of surrogate contaminants during the contact of recycled and virgin polymers in the melt phase. On the contrary, the "upper bound" conditions used in Step 5 correspond to the use of an equation that includes overestimation³. The thickness used in the migration simulation was divided by 2.5 in the step of thermoforming, considering the draw ratio as reported in the plot of Figure 2A of the original notification⁵.

		temperature(°C)	time	contact with food	Density	Tau	Ap'	equation	thickness
Step 1	EXTRUSION	280	0.33 min	NO	1.2	1577	3.2	realistic PET > 70°C	total
Step 2	STORAGE	25	180 days	NO	1.375	1577	-1.5	realistic PET <70°C	total
Step 3	THERMOFORMING	125	10 sec	NO	1.375	1577	3.2	realistic PET > 70°C	total /2.5
Step 4	STORAGE	25	180 days	NO	1.375	1577	-1.5	realistic PET <70°C	total/2.5
		25	365 days						
Step 5	CONTACT WITH FOOD	40	10 days	YES	1.375	1577	3.1	upper bound PET <70°C	total/2.5
		20	10 days						

Table 2: conditions under which the simulation of migrations were simulated

³ Brandrup, J., Immergut, E. H., & Grulke, E. A. (1999). "Polymer Handbook" (4th Edition). Wiley-Interscience

⁴ EFSA Scientific Guidance on the criteria for the evaluation and on the preparation of applications for the safety assessment of post-consumer mechanical PET recycling processes intended to be used for manufacture of materials and articles in contact with food; DOI: 10.2903/j.efsa.2024.8879, 11.06.2024

⁵ Reference is made to Figures 2a and 2b of the original notification (p. 6), which show examples of the most common distribution of draw ratios applied to produce thermoforms for protein and bakery products, and for fruits and vegetables, respectively

Calculations have been made executing Step 1 to Step 5. Then another calculation has been made using only step 1 and 5 (omitting steps 2 to 4). The outcomes of the simulation carried out by using Step 1 immediately followed by Step 5 do not differ from that the outcomes of the simulation with all the steps 1 to 5. Two examples of such an equivalence are provided in Annex I.

The equivalence between both methods suggests that the omission of Steps 2 to 4 do not significantly impact the migration calculation, which may imply these steps are not critical for the specific contaminants or materials under study. This also implies that modifications of the storage conditions, e.g. extending to 365 days instead of 180 days, would have a negligible impact on the final outcomes.

We have therefore decided to calculate the simulated migration by using Step 1 plus Step 5 instead of simulating all steps.

The charts provided in Annex II show the results of the simulated migration as a function of the total thickness of the sheets for different A/B/A structures, different percentage of RPET and different packaging conditions. The curves represented in the charts also contain the 2nd grade polynomial equation that can be used for the interpolation and extrapolation to different thickness' values.

The data presented in the charts have been calculated from an initial concentration of surrogates, designed as the "worst-case" scenario of 300 ppm of surrogate. This initial concentration is different from the 3 ppm used by EFSA, consequently the limit becomes 15 ppb instead of 0.15 ppb used by EFSA.

The points illustrated in the charts corresponds to the simulated migration of the surrogate contaminants showing highest value.

For the technology Y1Y2 this surrogate corresponds to Benzophenone at all simulated time/temperature conditions and for all thickness values.

For the technology X1X2W this surrogate corresponds to Benzophenone at all simulated time/temperature conditions for thickness values less or equal than 700 micron and becomes Chloroform at all simulated time/temperature conditions for thickness values higher than 700 microns.

Most occurring substances - Art. 13(5)(c)

The analysis of substances with a molecular weight of up to 1000 Dalton has been made by screening methods performed by 9 different laboratories. The number of samples has been extended from the previous monitoring report. More than 160 samples for input and the correspondent 160 samples for output sheet after decontamination have been performed. The screening of the above mentioned monitoring has resulted in the development of two lists presented in Annex III, for the input material and Annex IVa and IVb for the output materials (respectively for technologies X1X2W and Y1Y2. These annexes provide an overview of the substances detected and categorized during the screening process, respectively for the incoming material and for the output, as a function of the technology configuration. In these Annexes are reported all substances detected with a minimum frequency of 3%, substances occurring at a lower frequency have been considered adventitious contaminants and not reported in the tables. Furthermore, a newly updated list, detailing the 20 most frequently occurring substances in input materials, has been developed. This new list highlights the occurrences and variations of substances, allowing for a more in-depth understanding of their distribution.

The difference between the newly generated list of substances and the data presented in the second monitoring report can be attributed to a significantly larger set of samples tested. This expansion of sample size has provided a more comprehensive overview of the distribution of substances within the analysed materials.

By increasing the number of samples, the results become in principle more statistically representative of the input and the output materials. This comprehensive approach enables to make better assessments of substance occurrence and the behaviour during recycling processes. It also improves the ability to compare results between different reports, such as the second monitoring report and the current analysis.

Three distinct types of substances have been identified in the recycled PET material:

- Substances that are often introduced into the input material due to the use of PET in food contact applications. Examples include substances such as limonene and acetophenone. These contaminants enter the material during its initial use phase and can persist to some extent through the recycling process.
- PET-Related Substances: These are substances inherent to the chemical composition of PET or are generated during the recycling process. Examples include acetaldehyde and PET oligomers.
- 3. Substances originating from contaminating polymers: These substances are formed as byproducts when contaminating polymers are subjected to heat or other recycling conditions. For example, benzene is generated from residues of PVC, styrene from residues of polystyrene, BPA from residues of polycarbonate³

Decontamination efficiency - Art. 13(5)(c)

The decontamination efficiency of the recycling technologies used was evaluated specifically for contaminants in the PET materials. This evaluation was carried out by comparing the concentration of contaminants in the input materials to their concentration in the output materials after undergoing decontamination processes.

One of the key challenges in assessing decontamination efficiency by NIAS analysis, method that is not comparable to a challenge test, lies in accurately correlating the variability and dispersion of input data with the corresponding variability and dispersion in output results. This inconsistency is largely due to differences in sample collection techniques and the variety of analytical methods used across laboratories. Each laboratory has adopted distinct procedures and conditions for measuring the concentration of substances, leading to a scattered range of results. Variations in analytical conditions can have a profound effect on the concentration readings of substances. Consequently, the data may exhibit significant scatter, which makes it difficult to determine clear patterns or trends in decontamination effectiveness across different technologies.

This dispersion of data emphasizes the need for standardized analytical methods. By aligning laboratory procedures and adopting a uniform approach to testing, the comparability of decontamination data can be improved. As previously outlined, misalignments of laboratory practices represented a liming factor in our analysis.

While the decontamination efficiency has been calculated for contaminants, it has not been computed for substances that are either naturally present in PET or generated during the recycling process. These polymer-related substances, such as acetaldehyde and PET oligomers are part of the intrinsic properties of PET or byproducts of the polymer's breakdown during processing.

Annex V provides a detailed list of the 20 most frequently occurring substances in the input materials, occurrence rates and variation between input and output.

Contaminating materials in the plastic input - Art. 13(5)(d)

The contaminating materials present in the plastic input are controlled by the specifications delivered by the producers of flakes.

The content of food grade PET in the plastic input is \geq 95%. Other contaminants include:

- PVC ≤ 50 ppm
- Polyolefins ≤ 100 ppm
- Other plastics ≤ 50 ppm
- Metals ≤ 10 ppm
- Paper and wood fibres ≤ 10 ppm
- Other inert materials $\leq 5\%$

Origin of the identified contaminants - Art. 13(5)(e)

The potential origin of the identified contaminants is under development. It will be reported in the next monitoring period.

Measure or estimation of migration - Art. 13(5)(f)

ABA sheets containing different percentage of virgin and RPET have been analysed in order to carry out a complete screening of intentional and non-intentionally added components. The analysis has been carried out on sheets submitted to cryogenic grinding, and subsequently extracted in conditions described under the paragraph "Sampling strategy and analytical method". This allowed to detect the concentration of all substances present in the sheets.

Five most representative substances have been selected, namely

- 1. Benzene, substance formed during the degradation of PVC present as a contaminant in the input material. It is not excluded, however that benzene may also be generated by certain analytical methods
- 2. 2,2-bis(4-hydroxyphenyl)propane (aka BPA), formed from contamination of the input material by polycarbonate and also contamination from other sources (e.g. inks, coatings etc.)
- 3. Limonene, substance present because of contamination by food (juices, soft drinks in PET bottles)
- Terephthalic acid, bis(2-ethylhexyl) ester, substance used as plasticiser, to replace Phthalic acid, bis(2-ethylhexyl) ester. It is the result of a contamination by other polymers (e.g. PVC).
- 5. Phthalic acid, bis(2-ethylhexyl) ester while widely replaced is still used as plasticiser, and usually represents an indicator of contamination by PVC (most probably by labels).

For the five substances mentioned above the following analysis have been carried out

- Simulation of migration with the AKTS software,
 - From an hypothetical monolayer sheet of 300 micron, containing the five substances at the concentration measured experimentally in the ground sheets samples

containing 100% RPET in the B layer. This calculation does not consider the presence of a functional barrier

 From ABA structures with various ABA ratio and referring the measured concentration of the five substances to the B layer only (i.e. considering that they are present as contaminants in the original RPET). This implies a correction of the concentration of these substances accounting for the dilution introduced by the A layers. This calculation considers the presence of a functional barrier

The parameters for calculation of migration were: surface-to-volume ratio of 6 sq.dm/1000 ml, conditions 10 days at 20°C, 10 days at 40°C and 365 days at 25°C. The results are reported in Table 3.

Experimental migration tests in D2 simulant (95% ethanol) carried out from two ABA sheets respectively of 300 (manufactured by the X1X2W technology configuration) and 340 micron thickness (manufactured by the Y1Y2 technology configuration), with ABA ratio of 7.5/85/7.5 and 100% of RPET in the B layer, at conditions 10 days at 20°C, 10 days at 40°C and 10 days at 60°C. The results are reported in Table 5, for the five substances respectively in Table 4.1, 4.2, 4.3, 4.4 and 4.5

The results of the simulation and of the actual migration are reported in Table 4. For a proper interpretation of Table 4, the following should be taken into account:

- The data corresponding to "results_nonscaled_output" refers to concentration of the substances measured in the sheets, after grinding, with the method described in the paragraph "Sampling strategy and analytical method";
- 2. The data corresponding to "results_scaled_output" refers to the same concentration, corrected as the substances were in B layer only (considering the dilution caused by layers A)
- 3. The results of simulation of migration (ppb)- data from "results_nonscaled_output" have been calculated from a sheet of mono-layer with 300 micron thickness, assuming that the concentration of the ground sample is equally distributed in the whole sheet
- 4. The results of simulation of migration (ppb)- data from "results_scaled_output" have been calculated for sheets of 300 micron thickness, with ABA ratio corresponding to the "ABA structures" column.

The results show that the simulation of migration carried out on sheets having the measured concentration in layer B are in line with the experimental measures, except for benzene.

This requires more investigation, that will be carried out during the next monitoring period.

The results also show that actual migration of the substances in the tested conditions is almost always "not detectable", with the exception of benzene at 10 days/40°C and 10 days/60°C.

As expected, the analytical test does not have a sufficient LOD to detect the substances at the level calculated in the simulation of migration.

Table 3: results of migration simulation of the selected substances detected in the sheets

substance	ABA structures	average conc of the substance in the sheet (results_nonscaled_o utput)/ (ppb)	average conc of the substance in the sheet (resultsscaled_outp ut)/ (ppb)		results of simulation of migration (ppb)- data rom "results_nonscaled_output" Thickness: 300 micron			results of simulation of migration (ppb)- data from "results_scaled_output" Thickness: 300 micron/ ABA structures		
		results referred only t RPET in		10 days 20°C	10 days 40°C	365 days 25°C	10 days 20°C	10 days 40°C	365 days 25°C	
	5/90/5	1594,00	1778,00	0,33	1,21	2,78	<0.01	0,07	1,09	
h	7,5/85/7,5	960,00	1123,00	0,20	0,73	1,67	<0.01	0,01	0,36	
benzene	10/80/10	1002,00	1250,00	0,21	0,76	1,75	<0.01	<0.01	0,19	
	15/70/15	526,00	707,00	0,11	0,40	0,92	<0.01	<0.01	0,02	
	5/90/5	335,00	371,00	0,04	0,16	0,37	<0.01	<0.01	0,07	
limonene/d-limonene	7,5/85/7,5	136,00	160,00	0,02	0,06	0,15	<0.01	<0.01	0,01	
innonene/u-innonene	10/80/10	200,00	250,00	0,03	0,10	0,22	<0.01	<0.01	<0.01	
	15/70/15	112,00	155,00	0,01	0,05	0,12	<0.01	<0.01	<0.01	
	5/90/5	1779,00	1971,00	0,13	0,47	1,07	<0.01	<0.01	<0.01	
2,2-bis(4-	7,5/85/7,5	1974,00	2308,00	0,14	0,52	1,19	<0.01	<0.01	<0.01	
hydroxyphenyl)propane	10/80/10	2296,00	2831,00	0,16	0,60	1,38	<0.01	<0.01	<0.01	
	15/70/15	1027,00	1375,00	0,07	0,27	0,62	<0.01	<0.01	<0.01	
	5/90/5	265,51	296,64	0,01	0,03	0,07	<0.01	<0.01	<0.01	
terephthalic acid, bis(2-	7,5/85/7,5	1851,00	2167,79	0,06	0,21	0,48	<0.01	<0.01	<0.01	
ethylhexyl)ester	10/80/10	2156,59	2695,74	0,07	0,24	0,56	<0.01	<0.01	<0.01	
	15/70/15	6740,00	8981,37	0,21	0,76	1,75	<0.01	<0.01	<0.01	
	5/90/5	567,00	656,00	0,02	0,06	0,15	<0.01	<0.01	<0.01	
phthalic acid, bis(2-	7,5/85/7,5	697,00	934,00	0,02	0,08	0,18	<0.01	<0.01	<0.01	
ethylhexyl) ester	10/80/10	446,00	557,00	0,01	0,05	0,12	<0.01	<0.01	<0.01	
	15/70/15	2087,00	3057,00	0,06	0,24	0,54	<0.01	<0.01	<0.01	

Table 4 – migration results of the selected substances detected in the sheets

Table 4.1 - migration results of Benzene

Technology Configuration	LAB	CONDITIONS	Substance	Migration 1 ppb	Migration 2 ppb	Migration 3 ppb	Average migration ppb	LOD ppb	Simulation ABA- ppb												
	LAB a			ND	ND	ND	ND	0.06													
Y1 / Y2	LAB b			ND	ND	ND	ND	1.20													
11/12	LAB c			ND	ND	ND	ND	1.50													
	LAB d	10d-20ºc		ND	ND	ND	ND	0.18	<0.01												
	LAB a	100-20-0		ND	ND	ND	ND	0.06	<0.01												
X1 / X2 / W	LAB b			ND	ND	ND	ND	1.20													
×1/ ×2/ VV	LAB c			ND	ND	ND	ND	1.50													
	LAB d			ND	ND	ND	ND	0.18													
	LAB a LAB b	 10d-40°c Be		2.0	2.0	2.0	2.0	0.06													
Y1 / Y2				ND	ND	ND	ND	1.20													
11/12	LAB c			ND	ND	ND	ND	1.50													
	LAB d		10d-40ºc	10d-40ºc	10d-40ºc	10d-40°c Benze	10d-40%	10d 40%	10d-40%	10d-40%	10d-40%	10d-40%	10d-40%	10d-40%	Ponzono	0.8	0.8	0.8	0.8	0.18	0.01
	LAB a						Delizene	0.3	0.3	0.4	0.3	0.06	0.01								
X1 / X2 / W	LAB b			ND	ND	ND	ND	1.20													
×1/ ×2/ vv	LAB c			ND	ND	ND	ND	1.50													
	LAB d			ND	ND	ND	ND	0.18													
	LAB a			5.4	4.3	2.0	3.9	0.06													
Y1/Y2	LAB b			ND	ND	ND	ND	1.20													
11/12	LAB c			ND	ND	ND	ND	1.50													
	LAB d	10d-60ºC		11.4	11.4	10.8	11.2	0.18													
	LAB a			1.9	1.9	1.9	1.9	0.06													
V1 / V2 / W/	X1 / X2 / W/ LAB b			ND	ND	ND	ND	1.20													
X1/X2/W/F	LAB c			ND	ND	ND	ND	1.50													
	LAB d			1.9	2.0	1.7	1.9	0.18													

Table 4.2 - migration results of limonene

Technology Configuration	LAB	CONDITIONS	Substance	Migration 1 ppb	Migration 2 ppb	Migration 3 ppb	Average migration ppb	LOD ppb	Simulation ABA- ppb							
	LAB a			ND	ND	ND	ND	6								
X1 / X2 / W	LAB b			ND	ND	ND	ND	1.2								
	LAB c			ND	ND	ND	ND	15								
	LAB d	10d-20ºc		ND	ND	ND	ND	0.6	<0.01							
	LAB a	100-20-0		ND	ND	ND	ND	6	<0.01							
Y1/Y2	LAB b			ND	ND	ND	ND	1.2								
11/12	LAB c	4		ND	ND	ND	ND	15								
	LAB d			ND	ND	ND	ND	0.6								
	LAB a	_		ND	ND	ND	ND	6								
X1 / X2 / W	LAB b	- - - 10d-40%c					ND	ND	ND	ND	1.2					
X1/ X2/ W	LAB c			ND	ND	ND	ND	15								
	LAB d		10d-40%	10d-40%	10d-40%c	10d-40%c	10d-40%	10d-40%c	10d-40%c	10d-40ºc	Limonene	ND	ND	ND	ND	0.6
	LAB a	100 40-0	Limonene	ND	ND	ND	ND	6	0.01							
Y1/Y2	LAB b			ND	ND	ND	ND	1.2								
11/12	LAB c			ND	ND	ND	ND	15								
	LAB d			ND	ND	ND	ND	0.6								
	LAB a			ND	ND	ND	ND	6								
X1 / X2 / W	LAB b			ND	ND	ND	ND	1.2								
X1/ X2/ W	LAB c			ND	ND	ND	ND	15								
	LAB d	10d-60ºC		ND	ND	ND	ND	0.6								
	LAB a			ND	ND	ND	ND	6								
Y1 / Y2	LAB b		-	ND	ND	ND	ND	1.2								
	LAB c			ND	ND	ND	ND	15								
	LAB d			ND	ND	ND	ND	0.6								

Table 4.3 - migration results of Bisphenol A

Technology Configuration	LAB	CONDITIONS	Substance	Migration 1 ppb	-	Migration 3 ppb	Average migration ppb	LOD ppb	Simulation ABA-ppb						
	LAB a			ND	ND	ND	ND								
Y1 / Y2	LAB b			ND	ND	ND	ND	1.5							
11/12	LAB c			ND	ND	ND	ND	6.0							
	LAB d	10d-20⁰c		ND	ND	ND	ND		<0.01						
	LAB a	100-20-0		ND	ND	ND	ND		<0.01						
X1/X2/W	LAB b			ND	ND	ND	ND	1.5							
×1/×2/W	LAB c			ND	ND	ND	ND	6.0							
	LAB d			ND	ND	ND	ND								
	LAB a			ND	ND	ND	ND								
Y1 / Y2	LAB b			ND	ND	ND	ND	1.5							
11/12	LAB c			ND	ND	ND	ND	6.0							
	LAB d	10d-40ºc	Bisphenol A	ND	ND	ND	ND		<0.01						
	LAB a	100-40=0	100-40=C	100-40=0	100-40=C	C Dispriendi A	ND	ND	ND	ND	6.0	<0.01			
X1 / X2 / W	LAB b			ND	ND	ND	ND	1.5							
X1/ X2/ W	LAB c			ND	ND	ND	ND	6.0							
	LAB d			ND	ND	ND	ND								
	LAB a			ND	ND	ND	ND								
Y1 / Y2	LAB b			ND	ND	ND	ND	1.5							
11/12	LAB c			ND	ND	ND	ND	6.0							
	LAB d	10d-60ºC	ND	ND	ND	ND									
	LAB a			ND	ND	ND	ND								
X1/X2/W	LAB b		_							ND	ND	ND	ND	1.5	
X1/X2/W	LAB c				ND	ND	ND	ND	6.0						
	LAB d			ND	ND	ND	ND								

Table 5.4 - migration results of Bis(2-ethylhexyl) terephthalate

Technology Configuration	LAB	CONDITIONS	Substance	Migration 1 ppb	Migration 2 ppb	Migration 3 ppb	Average migration ppb	LOD ppb	Simulation ABA-ppb													
	LAB a			ND	ND	ND	ND	48.0														
X1 / X2 / W	LAB b			ND	ND	ND	ND	3.0														
X1/ X2/ W	LAB c			ND	ND	ND	ND	60.0														
	LAB d	10d-20ºc		ND	ND	ND	ND	18.0	<0.01													
	LAB a	100-20=C		ND	ND	ND	ND	48.0	<0.01													
Y1 /Y2	LAB b			ND	ND	ND	ND	3.0														
11/12	LAB c			ND	ND	ND	ND	60.0														
	LAB d			ND	ND	ND	ND	18.0														
	LAB a			ND	ND	ND	ND	48.0														
X1 / X2 / W	LAB b	IUCI-4U≚C	IUCI-4U≌C	10d-40ºc	10d-40°c Bis(2-ethylhexyl) terephthalate								P				ND	ND	ND	ND	3.0	
	LAB c													Bis(2-ethylbeyyl)	ND	ND	ND	ND	60.0			
	LAB a					ND	ND	ND	ND	48.0	<0.01											
Y1 /Y2	LAB b		terepritialate	ND	ND	ND	ND	3.0														
11/12	LAB c			ND	ND	ND	ND	60.0														
	LAB d			ND	ND	ND	ND	18.0														
	LAB a			ND	ND	ND	ND	48.0														
X1 / X2 / W	LAB b			ND	ND	ND	ND	3.0														
A1/ A2/ W	LAB c			ND	ND	ND	ND	60.0														
	LAB d	10d-60ºC		ND	ND	ND	ND	18.0														
	LAB a	100-00-0		ND	ND	ND	ND	48.0														
Y1 /Y2	LAB b			ND	ND	ND	ND	3.0														
11/12	LAB c			ND	ND	ND	ND	60.0														
	LAB d			ND	ND	ND	ND	18.0														

Table 5.5 - migration results of Bis(2-ethylhexyl) phthalate

Technology Configuration	LAB	CONDITIONS	Substance	Migration 1 ppb	Migration 2 ppb	Migration 3 ppb	Average migration ppb	LOD ppb	Simulation ABA-ppb								
	LAB a			ND	ND	ND	ND	30.00									
X1 / X2 / W	LAB b			ND	ND	ND	ND	3.00									
X1/ X2/ W	LAB c			ND	ND	ND	ND	60.00									
	LAB d	10d-20⁰c		ND	ND	ND	ND	18.00	< 0.01								
	LAB a	100-20-0	≌C	ND	ND	ND	ND	30.00	NO.01								
Y1 / Y2	LAB b			ND	ND	ND	ND	3.00									
11,12	LAB c				ND	ND	ND	ND	60.00								
	LAB d			ND	ND	ND	ND	18.00									
	LAB a											ND	ND	ND	ND	30.00	
X1 / X2 / W	LAB b			ND	ND	ND	ND	3.00									
	LAB c			ND	ND	ND	ND	60.00									
	LAB d	10d-40⁰c	Bis(2-ethylhexyl)	ND	ND	ND	ND	18.00	< 0.01								
	LAB a	100-40-0	phthalate	ND	ND	ND	ND	30.00	NO.01								
Y1 / Y2	LAB b			ND	ND	ND	ND	3.00									
11,12	LAB c			ND	ND	ND	ND	60.00									
	LAB d			ND	ND	ND	ND	18.00									
	LAB a			ND	ND	ND	ND	30.00									
X1 / X2 / W	LAB b			ND	ND	ND	ND	3.00									
	LAB c			ND	ND	ND	ND	60.00									
	LAB d	10d-60ºC		ND	ND	ND	ND	18.00									
	LAB a	100-00-0		ND	ND	ND	ND	30.00									
Y1 / Y2	LAB b			ND	ND	ND	ND	3.00									
11/12	LAB c			ND	ND	ND	ND	60.00									
	LAB d			ND	ND	ND	ND	18.00									

Sampling strategy and analytical method - Art. 13(5)(g) and Art. 13(5)(h)

The tested samples have been provided by the consortium members, and were selected to represent commonly used flakes purchased in the market place and used by converters in the B layer, and ABA structures normally supplied to the market. All technologies were represented in the sampling. The samples were collected at regular intervals in the period from January to March 2024, and the tests were reported and elaborated in the 2nd Quarter of 2024.

The samples were tested by 9 laboratories located in different EU Countries, by using different test methods.

The screening analysis was carried out for

- Volatile substances
- Semi-volatile substances, and
- Non-volatile substances

The laboratories and relevant test methods are summarized in Annex V.

Discrepancies between input and output - Art. 13(5)(i)

As previously outlined, some substances originate from the contamination of PET that occur in the use, disposal and collection phase. These substances are normally removed during the recycling process; for these substances a decontamination efficiency can be calculated as a percent difference between output and input material, and the resulting outcome will be a negative number (column z "difference_input_output" in the master sheet of Annex I.

On the contrary, some substances are generated during the processing; they only present in the output, or their quantity increases in the output compared to the input

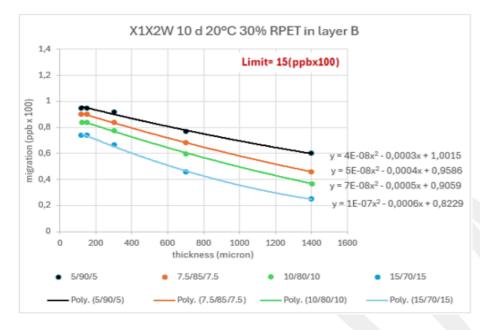
Discussion of differences from previous report- Art. 13(5)(j)

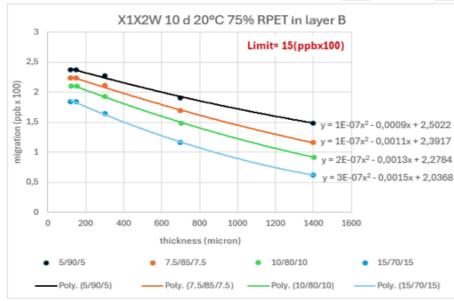
There are numerous differences introduced by this 3rd monitoring report compared with previous reports.

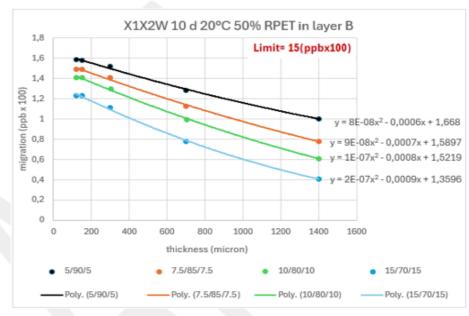
- An updated calculation of the potential migration of surrogate contaminants, replacing those reported in the paragraph entitled "Calculation of migration through a Functional Barrier", of the original notification dossier;
- An updated list of the first 20 most occurring substances in the input materials, along with the decontamination efficiency calculated for selected representative substances;
- The calculated specific migration in simulant D2 (95% ethanol) at time/temperature conditions of 10 days at 20°C, 10 days at 40°C and at 365 days 25°C, for five substances considered representative of the contamination
- The actual specific migration of the above mentioned five substances in simulant D2 (95% ethanol), from sheets containing 100% RPET in the B layer and having A/B/A ratio of

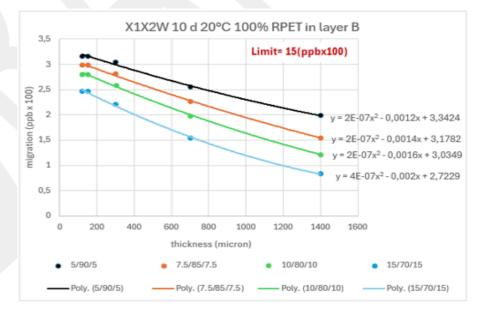
7.5%/85%/7.5%, at time/temperature conditions of 10 days at 20°C, 10 days at 40°C and 10 days at 60°C

Annex I- Equivalence of simulation approaches

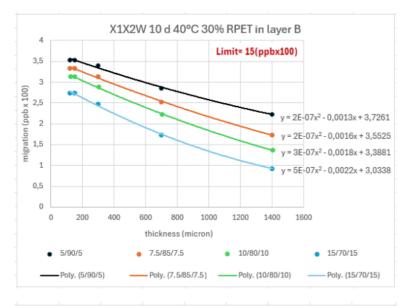

Annex I- Equivalence between simulation of migration made by calculating step 1,2,3 4 and 5 of Table 2, and by calculating steps 1 and 5 of the same Table

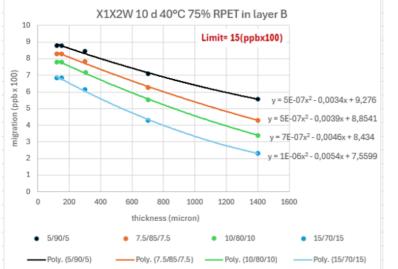

y1-y2	365 d 25°C EtOH 95%	50% R-PET
300 my	Simplified calculations ppb	All Steps calculations ppb
ChloroBenzene	12.19	12.20
MethylSalicilate	5.96	5.98
Methyl Stearate	13.32	13.50
Phenylcyclohexane	9.68	9.71
Toluene	11.92	11.92
Benzophenone	35.88	36.08
Chloroform	0	0
thickness (5%-90%-5%)	15-270-15	15-270-15

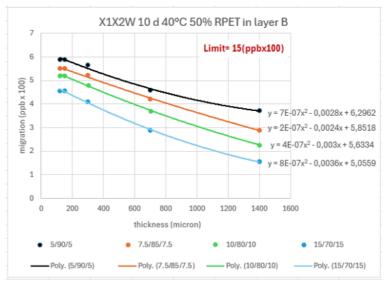

X1-X2-W	365 d 25°C EtOH 95%	50% R-PET
300 my	Simplified calculations ppb	All Steps calculations ppb
ChloroBenzene	4.81	4.81
MethylSalicilate	8.04	8.06
Methyl Stearate	4.91	4.98
Phenylcyclohexane	6.83	6.86
Toluene	5.27	5.27
Benzophenone	13.00	13.07
Chloroform	12.22	12.23
thickness (5%-90%-5%)	15-270-15	15-270-15

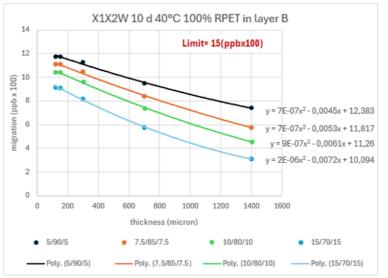

Annex II- Simulated migration for different ABA structures

X1X2W Configurations at 10 Days 20°C

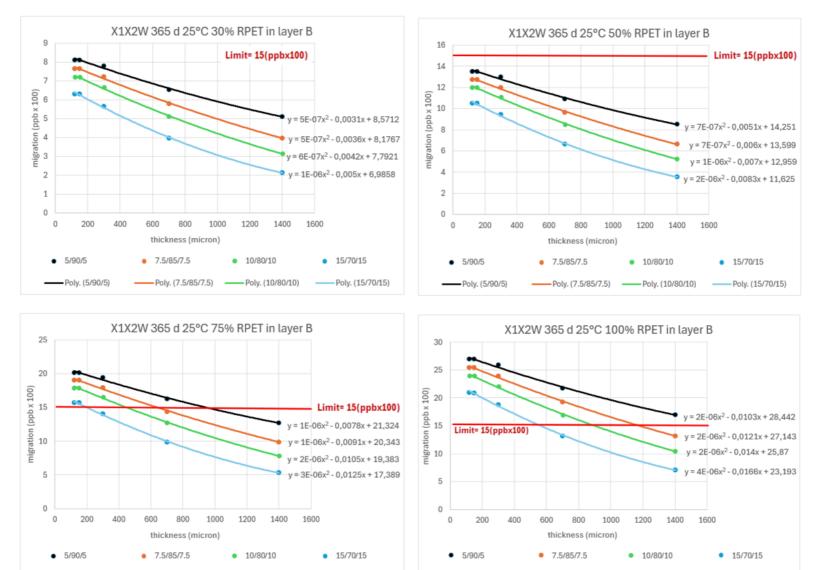






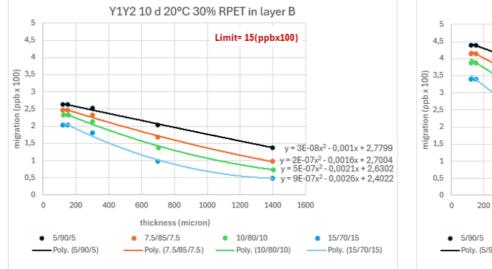


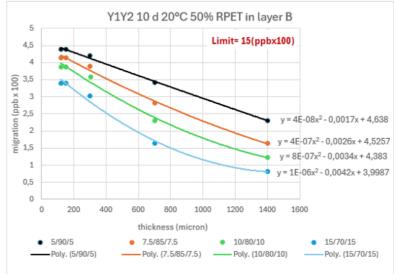
X1X2W Configurations at 10 Days 40°C

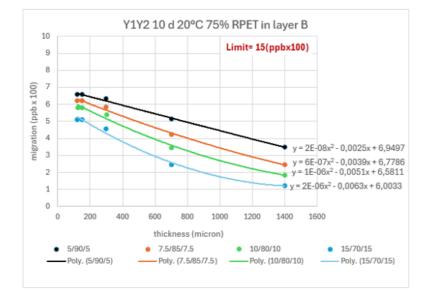


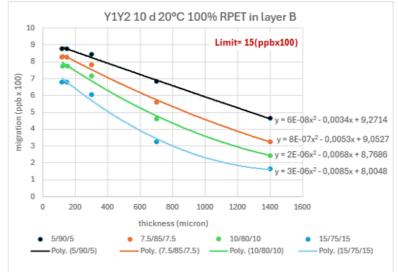
X1X2W Configurations at 365 Days 25°C

-----Poly. (7.5/85/7.5) -----Poly. (10/80/10)

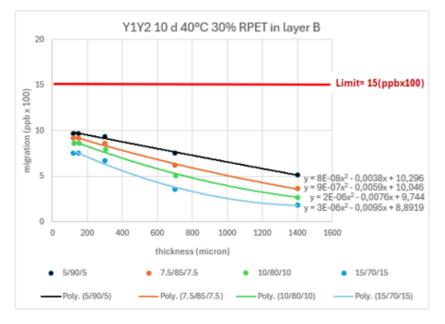

----- Poly. (15/70/15)

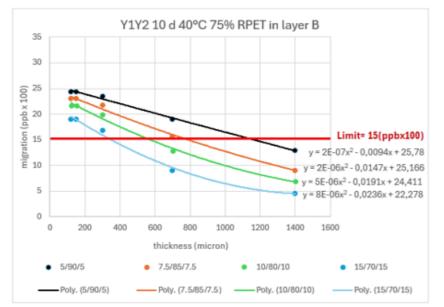

----- Poly. (5/90/5)

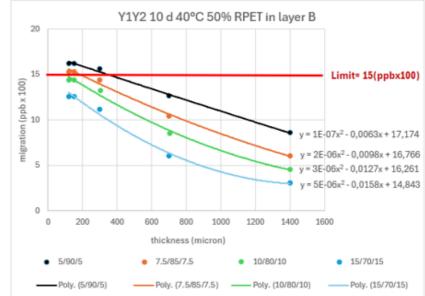

----- Poly. (7.5/85/7.5) ----- Poly. (10/80/10)

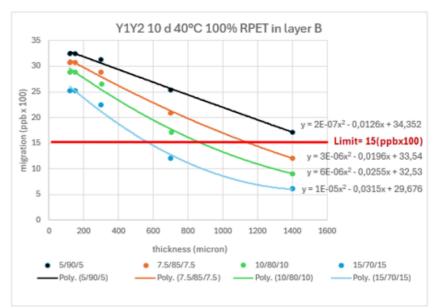

----- Poly. (15/70/15)

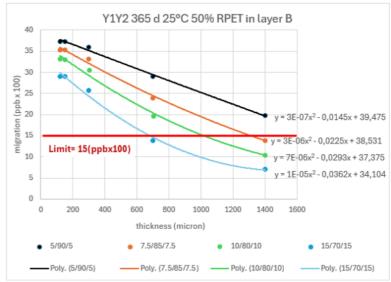
Y1Y2 Configurations at 10 Days 20°C

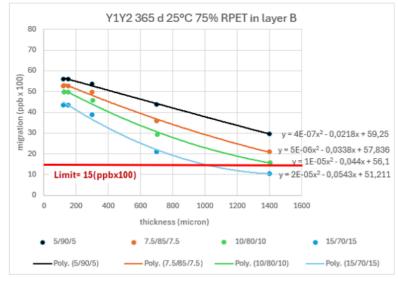


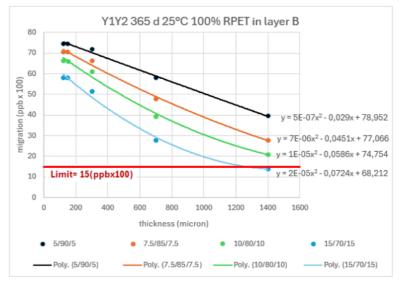












Y1Y2 Configurations at 365 Days 25°C

Annex III -Substances with Molecular Weight less than 1000 Da, and

relevant occurrence, found in the input material.

Functional Barrier 3rd Monitoring Program			
October 10th 2024			
Annex III: substances in the input			
substances in the input	cas_nr	mol weight	occurence in the input/100
2-methyl-1,3-dioxolane	497-26-7	88,0	0,95
acetaldehyde	75-07-0	44,1	0,80
benzene	71-43-2	78,0	0,78
acetic acid	64-19-7	60,1	0,69
benzaldehyde	100-52-7	106,0	0,64
formic acid	64-18-6	46,0	0,61
acetic acid, ethyl ester	141-78-6	88,1	0,60
pet oligomers	n.a		0,59
terephthalic acid	100-21-0	166,1	0,58
acetone	67-64-1	58,0	0,57
ethyleneglycol	107-21-1	62,1	0,57
ethanol	64-17-5	46,1	0,57
limonene	138-86-3	136,0	0,54
toluene	108-88-3	92,0	0,54
acetophenone	98-86-2	120,0	0,52
2-pentyl-furan	3777-69-3	138,0	0,52
butyrolactone	96-48-0	86,0	0,49
tpa-eg oligomers	n.a		0,45
phosphorous acid, tris(2,4-di-tert-butylphenyl)ester	31570-04-4	646,9	0,40
albn	78-67-1	164,0	0,40
oleamide	301-02-0	281,5	0,40
xylenes	n.a	106,0	0,39
styrene	100-42-5	104,2	0,39
oxidized irgafos 168	95906-11-9	663,0	0,37
2,2-bis(4-hydroxyphenyl)propane	80-05-7	228,3	0,37
2-[2-hydroxy-3,5-bis(1,1-dimethylbenzyl)phenyl]benzotriazole	70321-86-7	447.0	0,37
2-ethyl-1-hexanol	104-76-7	130,0	0,34
1,4-benzenedicarboxylic acid, bis(2-hydroxyethyl) ester	959-26-2	254,1	0,33
bis(2-ethylhexyl) sebacate	122-62-3	427,0	0,30
1,2-ethanediol, monoacetate	542-59-6	104,0	0,30
aldehydes	n.a	,-	0,30
ketones	n.a		0,29
1-pentanol	71-41-0	88.2	0,28
y-terpinene	99-85-4	136,0	0,28
p-cymene	99-87-6	134,0	0,27
ethylbenzene	100-41-4	104,0	0,26
9,10-anthracenedione, 1,4-bis[(2-ethyl-6-methylphenyl)amino]-	41611-76-1	100,0	0,24
d-limonene	5989-27-5	136,1	0,23
prob. dichloromethane	75-09-2	84,0	0,23
3-((12-acetoxyoctadecanoyl)oxy)propane-1,2-diyl diacetate	330198-91-9	500,3	0,23
terephthalic acid, bis(2-ethylhexyl)ester	6422-86-2	500,5	0,23
benzoic acid	65-85-0	122.1	
		122,1	
1-acetoxyacetone	592-20-1	116,0	
1,4-dioxane	123-91-1	88,0	
hydrocarbons	n.a	0,0	
phthalic acid, bis(2-ethylhexyl) ester	117-81-7	390,6	
adipic acid, bis(2-ethylhexyl) ester	103-23-1	370,0	
1,2-ethanediol diformate	629-15-2	118,0	
1,2-ethanediol, monoformate	628-35-3	90,0	
salicylic acid, methyl ester	119-36-8		0,16
carboxylic acid	n.a		0,16
hexanal	66-25-1	100,0	
1,4-benzenedicarboxaldehyde	623-27-8	134,0	
palmitamide	629-54-9	255,4	
1-butanol	71-36-3	74,1	0,14

substances in the input	cas_nr	mol weight	occurence in the input/100
3,6,13,16-tetraoxatricyclo[16.2.2.2(8,11)]tetracosa-8,10,18,20,21,23-hexaene-2,7,12,17-			
tetrone	1000398-77-0	384,1	0,14
tpa-eg oligomers **	n.a		0,13
cyclic[tpa+eg]3+[ipa+eg]	n.a	768,2	0,13
cyclic[tpa+eg]2+[ipa+deg]	n.a	634,8	0,13
cyclic[tpa+eg]+[ipa+eg]	n.a	384,1	0,13
cyclic[tpa+deg]2	n.a	479,5	0,13
δ-valerolactone	542-28-9	100,0	0,12
cyclic[tpa+eg]2+[ipa+eg]	n.a	598,1	0,12
benzyl acetate	140-11-4	150,0	0,12
nonanal	124-19-6	142,0	0,11
naphthalene	91-20-3	128,0	0,11
cyclic[tpa+eg]+[ipa+deg]	n.a	428,1	0,11
linear[tpa+eg]2+deg	n.a	512,1	0,11
1,3-dioxolane	646-06-0	74,1	0,11
palmitic acid	57-10-3	256,4	0,10
isophthalaldehyde	626-19-7	134,0	0,10
phenol	108-95-2	94,1	0,10
octadecanoic acid, 2,3-bis(acetyloxy)propyl ester	33599-07-4	442,3	0,10
furfural	98-01-1	96,0	0,10
erucamide	112-84-5	337,6	0,10
cyclic[tpa+eg]4+[ipa+eg]	n.a	960,2	0,10
2-ethylhexyl-acetate	103-09-3	172,0	0,10
2.6-dimethyl-pyridine	103-09-3	172,0	0,10
1-stearoylglycerol (1-monostearin)	108-48-5	380,3	0,10
	81-48-1	329,1	
1-hydroxy-4-(p-toluidino)anthraquinone tetrahydrofuran	109-99-9	72,1	0,10
	491-36-1	146,0	0,09
4(1h)-quinazolinone		660,1	0,05
linear[tpa+eg]3+eg	n.a		0,08
linear[tpa+eg]2	n.a	402,1	0,08
isophthalic acid	121-91-5	400.0	0,08
cyclic[tpa+eg]3+[ipa+deg]	n.a	480,3	0,08
cyclic[tpa+eg]+[tpa+deg]2		686,2	0,08
2,4-dimethylfuran	3710-43-8	96,0	0,08
1,2-ethanediol, monobenzoate	94-33-7	166,1	0,08
octanal	124-13-0		0,08
linear[tpa+eg]3+deg	n.a	380,3	0,08
linear[tpa+eg]2+eg	n.a	468,1	0,08
heptanal	111-71-7		0,08
cyclic[tpa+eg]4+[tpa+deg]	n.a	1026,2	0,08
2-propenal	107-02-8		0,08
2-pentanone	107-87-9		0,08
1,2-ethanediol, diacetate	111-55-7	146,0	0,08
pentanal	110-62-3		0,07
hexanoic acid	142-62-1	116,0	
eucalyptol	470-82-6	154,0	
2-nonanone	821-55-6		0,07
tri-n-butyl acetyl citrate	77-90-7		0,07
phenol, 2,4-bis(1-methyl-1-phenylethyl)-	2772-45-4	330,2	0,07
cumene	98-82-8	120,0	0,07
benzonitrile, 2-amino-	1885-29-6	118,1	0,07
aldehydes c5-c11	n.a	44,0	0,07
prob. 1-acetate-1,2-propanediol	627-69-0	118,0	0,06
methyl hydroxyacetate	96-35-5		0,06
methyl formate	107-31-3		0,06
cyclotetrasiloxane, octamethyl-	556-67-2	296,1	

Annex III: substances in the input		maluate	a service and in the local second
substances in the input	cas_nr	mol weight	occurence in the input/100
acetic acid, methyl ester	79-20-9	100.0	0,06
4(1h)-quinazolinone, 2-methyl-	1769-24-0	160,1	0,06
2-methyl-furan	534-22-5	82,0	0,06
stearic acid	57-11-4	284,5	0,05
solvent blue 104	116-75-6	474,2	0,05
pet cyclic trimer	7441-32-9	576,1	0,05
nonylphenol ethoxylates (npeo5)	n.a	459,3	0,05
ketones c5-c10	n.a		0,05
butyric acid	107-92-6	88,1	0,05
bis(3,4-dimethylbenzylidene)sorbitol	135861-56-2	100.0	0,05
benzene, 1,2,3-trimethyl- or isomer	526-73-8	120,0	0,05
acetic acid, butyl ester	123-86-4		0,05
2-decanone	693-54-9	494.9	0,05
1,1,1-trimethylolpropane	77-99-6	134,0	0,05
triphenylphosphine oxide	791-28-6	278,1	0,05
propanal, 2-methyl-	78-84-2		0,05
methacrolein	78-85-3		0,05
dimethylsilanediol	1066-42-8		0,05
caprolactone	502-44-3		0,05
butyraldehyde	123-72-8	72,1	0,05
benzoic acid, 4-methyl-, 2-hydroxyethyl ester	28129-15-9	180,1	0,05
aldehydes c5-c10	n.a	44,0	0,05
9-octadecenoic acid (z)-, 2,3-bis(acetyloxy)propyl ester	55401-64-4		0,05
2-hexanone	591-78-6		0,05
2-heptanone	110-43-0		0,05
2-butenal	4170-30-3		0,05
2-butanone	78-93-3		0,05
2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene	7128-64-5	430,0	0,05
1,3,5-trimethyl-benzene	108-67-8	120,0	0,05
1,2-cyclohexanedicarboxylic acid, diisononyl ester	166412-78-8		0,05
undecanal	112-44-7		0,04
thiodipropionic acid, didodecyl ester	123-28-4	514,9	0,04
propyl-benzene	103-65-1	120,0	0,04
propionaldehyde	123-38-6		0,04
pet cyclic dimer	24388-68-9	384,1	0,04
p/o-xylene	106-42-3/95-	106,0	0,04
o-phthalic acid	88-99-3		0,04
octadecanoic acid, 2-(acetyloxy)-1-[(acetyloxy)methyl]ethyl ester	55401-62-2		0,04
hexadecanoic acid, hexadecyl ester	540-10-3		0,04
furan	110-00-9		0,04
ftalan dietylu	84-66-2	222,1	0,04
dioctyl adipate	123-79-5	370,3	0,04
cyclopentanone	120-92-3	84,0	0,04
cyclohexane	110-82-7	84,0	0,04
c[eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid	n.a		0,04
c[eg/pa/eg/pa/eg/pa] pa=phthalic acid eg=ethylene glycol	n.a		0,04
c[eg/pa/eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid	n.a		0,04
c[deg/pa/eg/pa/eg/pa/eg/pa] pa=phthalic acid eg=ethylene glycol deg=diethylene glycol	n.a		0.04
c[deg/pa/deg/pa] deg= diethylen glycol pa= phthalic acid	n.a		0,04
benzene, 1-ethyl-4-methyl- or isomer	622-96-8	120,0	0,04
aldehydes c5-c12	n.a	120,0	0,04
acrylic acid, dodecyl ester	2156-97-0		0,04
2-methylbutyl acetate	624-41-9	130,0	0,04
2-aminobenzamide	88-68-6	368.0	0,04
2,4-di-tert-butylphenol	96-76-4	300,0	0,04
2(3h)-furanone, 5-ethyldihydro-	695-06-7		0,04
		60,1	
1-propanol tristivilana divezi manahutul ether	71-23-8 143-22-6	206,2	0,04
triethylene glycol monobutyl ether	2599-01-1	200,2	0,04
tetradecanoic acid, hexadecyl ester		100.0	0,04
succinic anhydride	108-30-5	100,0	0,04
solvent green 3	128-80-3	418,5	0,04
probable pet oligomer (dimer ether)	n.a		0,04
probable pet oligomer (cyclic dimer)	n.a		0,04
n-propyl acetate	109-60-4	102,0	0,04
myristyl myristate	3234-85-3	424,4	0,04
isothymol	499-75-2	150,0	0,04
hexamethyl cyclotrisiloxane	541-05-9		0,04
hexadecanoic acid, octadecyl ester	2598-99-4		0,04
ethylene terephthalate cyclic tetramer	16104-96-4	768,7	0.0

substances in the input	cas nr	mol weight	occurence in the input/100
ethylene (tere-, iso-)phthalate cyclic pentamer_pto	16104-97-5	960,2	0.04
eicosanoic acid, 2-(acetyloxy)-1-[(acetyloxy)methyl]ethyl ester	55429-68-0	,.	0,04
dof / 2-ethylhexyl fumarate	141-02-6	340,3	0,04
dihydro-5-methyl-2(3h)-furanone	108-29-2	100,0	0.04
decanal	112-31-2		0,04
cyclopentasiloxane, decamethyl-	541-02-6	370,1	0,04
carboxylic acids	n.a		0,04
c[eg/pa/eg/pa/eg/pa/eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid	n.a		0,04
c[deg/pa/eg/pa] pa=phthalic acid deg=diethylen glycol eg=ethylen glycol	n.a	428.1	0,04
c[deg/pa/eg/pa/eg/pa] pa=phthalic acid deg=diethylen glycol eg=ethylen glycol	n.a	620,2	0,04
butyl carbitol	112-34-5	184,1	0,04
4-amino-benzonitrile	873-74-5	118.0	0,04
4-(1-methylethyl)-benzaldehyde	122-03-2	148.0	0,04
2,2'-(1,4-phenylene)bis[4H-3,1-benzoxazin-4-one]	18600-59-4	369,0	0,04
2-(2-hydroxypropoxy)-1-propanol	106-62-7	134,0	0.04
1-octanol	111-87-5	130,2	0,04
1-ethyl-3-methyl-benzene	620-14-4	120,0	0,04
p-toluic acid, 5-tridecyl ester	n.a	318,3	0,03
prob. pyridine	110-86-1	79,0	0,03
prob. 2,5-dimethyl-furan	625-86-5	96,0	0,03
pentaerythritol	115-77-5	136,2	0,03
palmitoleamide	106010-22-4	253,2	0,03
octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	621-61-4	358,3	0,03
nonylphenol ethoxylates (npeo7)	n.a	550,3	0,03
n-hexane	110-54-3	86,0	0,03
methacrylic acid, methyl ester	80-62-6	100,1	0,03
maleic anhydride	108-31-6	98,1	0,03
linoleic acid	60-33-3		0,03
linear[tpa+eg]3	n.a	594,1	0,03
linear[tpa+eg]+deg	n.a	320,1	0,03
l[eg/pa/eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid	n.a		0,03
hexyl 2-(1-hexoxy-1-oxopropan-2-yl)sulfanylpropanoate	n.a	346,2	0,03
hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	23470-00-0	330,3	0,03
hexadecanoic acid, 2,3-bis(acetyloxy)propyl ester	55268-70-7	414,3	0,03
hexacosane	630-01-3	366,4	0,03
cyclohexasiloxane, dodecamethyl-	540-97-6	444,1	0,03
2-octanone	111-13-7		0,03
2-n-butyl furan	4466-24-4	124,0	0,03
2-chloroethyl benzoate	939-55-9	184,0	0,03
2,2'-oxybis-1-propanol	108-61-2	134,0	0,03
1-octene	111-66-0	112,2	0,03
1-octadecanol	112-92-5	270,3	0,03
1-methyl-3-propyl-benzene	1074-43-7	134,0	0,03
1-hexadecanol	36653-82-4	242,5	0,03
1,3-dipropylene glycol	2396-61-4	134,0	0,03
(m-z : 429.1-104.0-208.1-385.1); possible cyclic oligomer: (iso-tere)phathalic acid - ethylene glycol - (iso-tere)phathalic acid - diethylene glycol	n.a	428,1	0,03
(m-z: 385.2-296.1-104.0-149.1-341.1) ;possible cyclic oligomer: (iso-tere)phathalic acid -		,.	-,
ethylene glycol - (iso-tere)phathalic acid - ethylene glycol	n.a	384,1	0,03
(m-z : 385.2-104.0-296.1-341.1-429.1) ;possible cyclic oligomer: (iso-tere)phathalic acid -			
ethylene glycol - (iso-tere)phathalic acid - ethylene glycol	n.a	384,1	0,03
(m-z : 341.1-296.1-104.0-324.1-236.1-354.1-384.1) ; possible linear oligomer: (iso- tere)phathalic acid - ethylene glycol - (iso-tere)phathalic acid - ethylene glycol	n.a	490,1	0,03
(m-z; 296.1-341.1-104.0-324.1-384.1); possible linear oligomer; (iso-tere)phathalic acid -			
ethylene glycol - (iso-tere)phathalic acid - ethylene glycol	n.a	490,1	0,03
(m-z : 193.0-149.0-104.0-175.0); possible linear oligomer: terephathalic acid - ethylene glycol	n.a		0,03
(m-z: 130.0-117.0-371.3-239.2)	n.a		0,03

Annex IV -Substances with Molecular Weight less than 1000 Da, and relevant occurrence, found in the output material.

Functional Barrier 3rd Monitoring Program			
ANNEX IV a : substances in output for technology c	onfiguratio	n X1X2V	V
substance	cas nr	mw	occurence in output
benzene	71-43-2	78	0,93
2-methyl-1,3-dioxolane	497-26-7	88	0,91
acetaldehyde	75-07-0	44.05	0,81
acetic acid	64-19-7	60.05	0,69
terephthalic acid	100-21-0		0,61
	100-21-0	166,13	
pet oligomers	67-64-1	58	0,61
acetone			0,61
formic acid	64-18-6	46	0,58
ethyleneglycol	107-21-1	62,07	0,58
toluene	108-88-3	92	0,55
benzaldehyde	100-52-7	106,04	0,54
limonene	138-86-3	136	0,5
acetic acid, ethyl ester	141-78-6		0,5
styrene	100-42-5	104,15	0,47
tpa-eg oligomers			0,45
acetophenone	98-86-2	120	0,42
2,2-bis(4-hydroxyphenyl)propane	80-05-7	228,29	0,4
2-[2-hydroxy-3,5-bis(1,1-dimethylbenzyl)phenyl]benzotriazole	70321-86-7	447	0,39
2-pentyl-furan	3777-69-3	138	0,36
1,4-benzenedicarboxylic acid, bis(2-hydroxyethyl) ester	959-26-2	254,08	0,36
1,2-ethanediol, monoacetate	542-59-6	104	0,31
xylenes		106	0,3
aldehydes			0,29
albn	78-67-1	164	0,29
ketones			0,26
1,4-dioxane	123-91-1	88	0,26
butyrolactone	96-48-0	86	0,25
9,10-anthracenedione, 1,4-bis[(2-ethyl-6-methylphenyl)amino]-	41611-76-1		0,25
3-((12-acetoxyoctadecanoyl)oxy)propane-1,2-diyl diacetate	330198-91-9	500,34	0,25
1-pentanol	71-41-0	88,15	0,23
1,2-ethanediol, monoformate	628-35-3	90	0,23
terephthalic acid, bis(2-ethylhexyl)ester	6422-86-2		0,21
prob. dichloromethane	75-09-2	84	0,21
adipic acid, bis(2-ethylhexyl) ester	103-23-1	370	0,2
4-methyl-3-pentenoic acid	504-85-8	114	0,2
oxidized irgafos 168	95906-11-9	663	
d-limonene	5989-27-5	136,13	0,19
bis(2-ethylhexyl) sebacate	122-62-3	427	0,19
phosphorous acid, tris(2,4-di-tert-butylphenyl)ester	31570-04-4	646,94	
naphthalene	91-20-3	128	
hydrocarbons		0	
tpa-eg oligomers **			0,14
phthalic acid, bis(2-ethylhexyl) ester	117-81-7	390,6	
3,6,13,16-tetraoxatricyclo[16.2.2.2(8,11)]tetracosa-8,10,18,20,21,23-hexaene-			
2,7,12,17-tetrone	1000398-77-0	384,09	0,14
furfural	98-01-1	96	
ethylbenzene	100-41-4	106	
ethanol	64-17-5	46,07	
cyclic[tpa+deg]2		479,46	
cyclic[tpa+eg]2+[ipa+eg]		598,11	
cyclic[tpa+eg]2+[tpa+eg]		634,81	

substance	cas_nr	mw	occurence in output
cyclic[tpa+eg]+[ipa+eg]		384,08	0,13
cyclic[tpa+eg]3+[ipa+eg]		768,17	0,12
cyclic[tpa+eg]+[tpa+deg]2		686,16	0,12
cyclic[tpa+eg]+[ipa+deg]		428,11	0,12
4(1h)-quinazolinone	491-36-1	146,05	0,12
linear[tpa+eg]2+deg		512,13	0,11
1-hydroxy-4-(p-toluidino)anthraquinone	81-48-1	329,11	0,11
phenol	108-95-2	94,11	0,1
oleamide	301-02-0	281,5	0,1
nonanal	124-19-6	142	0,1
linear[tpa+eg]2+eg		468,1	0,1
cyclopentanone	120-92-3	84	0,1
cyclic[tpa+eg]3+[ipa+deg]		480,31	0,1
1,2-ethanediol diformate	629-15-2	118	0,1
hexanal	66-25-1	100	0,09
	00-23-1		
cyclic[tpa+eg]4+[ipa+eg]	65 95 Q	960,21	0,09
benzoic acid	65-85-0	122,12	0,09
2-ethyl-1-hexanol	104-76-7	130	0,09
octadecanoic acid, 2,3-bis(acetyloxy)propyl ester	33599-07-4	442,33	0,09
linear[tpa+eg]2		402,1	0,09
erucamide	112-84-5	337,59	0,09
cyclic[tpa+eg]4+[tpa+deg]		1.026,22	0,09
1,2-ethanediol, monobenzoate	94-33-7	166,06	0,09
palmitic acid	57-10-3	256,43	0,08
linear[tpa+eg]3+deg		380,29	0,08
2,6-dimethyl-pyridine	108-48-5	107	0,08
1-stearoylglycerol (1-monostearin)	123-94-4	380,29	0,08
methacrylic acid, methyl ester	80-62-6	100,12	0,07
9-octadecenoic acid (z)-, 2,3-bis(acetyloxy)propyl ester	55401-64-4		0,07
isophthalaldehyde	626-19-7	134,04	0,07
bis(3,4-dimethylbenzylidene)sorbitol	135861-56-2		0,07
acetic acid, methyl ester	79-20-9		0,07
1-butanol	71-36-3	74,12	0,07
1,4-benzenedicarboxaldehyde	623-27-8	134	0,07
tri-n-butyl acetyl citrate	77-90-7		0,06
stearic acid	57-11-4	284,49	0,06
pentanal	110-62-3		0,06
nonylphenol ethoxylates (npeo5)		459,29	0,06
linear[tpa+eg]3		594,14	0,06
heptanal	111-71-7	004,24	0,06
decanal	112-31-2		0,06
carboxylic acid	112-51-2		0,06
4(1h)-quinazolinone, 2-methyl-	1769-24-0	160,06	0,06
solvent blue 104	116-75-6	474,23	0,06
	110-73-0	-	
linear[tpa+eg]3+eg		660,15	0,06
isopropyl myristate	110-27-0	270	0,06
hexamethyl cyclotrisiloxane	541-05-9		0,06
furan	110-00-9		0,06
dimethylsilanediol	1066-42-8		0,06
aldehydes c6-c10			0,06
2-propenal	107-02-8		0,06
2-butenal	4170-30-3		0,06
1-propene-1,2,3-tricarboxylic acid, tributyl ester	7568-58-3		0,06
1-hexadecanol	36653-82-4	242,45	0,06
a-methylstyrene	98-83-9		0,05
thiodipropionic acid, didodecyl ester	123-28-4	514,86	0,05
phenol, 2,4-bis(1-methyl-1-phenylethyl)-	2772-45-4	330,2	0,05
pet cyclic trimer	7441-32-9	576,13	0,05
octadecanoic acid, 2-(acetyloxy)-1-[(acetyloxy)methyl]ethyl ester	55401-62-2		0,05
linear[tpa+eg]+deg		320,09	0,05

substance	cas_nr	mw	occurence in output
citric acid, triethyl ester	77-93-0		0.0
4-formvl-benzonitrile	105-07-7	131	0,0
		151	
2-pentanone	107-87-9		0,0
2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene	7128-64-5	430	0,0
2,4-di-tert-butylphenol	96-76-4		0,0
1,3-dioxolane	646-06-0	74,08	0,0
solvent green 3	128-80-3	418,5	0,0
pet cyclic dimer	24388-68-9	384,08	0.0
palmitamide	629-54-9	255,44	0.0
		200,44	
nethyl formate	107-31-3		0,0
ketones c5-c11			0,0
sophthalic acid	121-91-5		0,0
neptane	142-82-5	100	0,0
dioctyl adipate	123-79-5	370,31	0,0
dihydro-5-methyl-2(3h)-furanone	108-29-2	100	0,0
cyclopentasiloxane, decamethyl-	541-02-6	370,09	0,0
c[eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid			0,0
c[eg/pa/eg/pa/eg/pa] pa=phthalic acid eg=ethylene glycol			0,0
c[eg/pa/eg/pa/eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid			0,0
c[eg/pa/eg/pa/eg/pa/eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid			0,0
[deg/pa/eg/pa/eg/pa/eg/pa] pa=phthalic acid eg=ethylene glycol deg=diethylene			-,-
glycol			0,0
c[deg/pa/deg/pa] deg= diethylen glycol pa= phthalic acid			0,0
penzonitrile, 2-amino-	1885-29-6	118,05	0,0
penzoic acid, 4-methyl-, 2-hydroxyethyl ester	28129-15-9	180,08	0,0
aldehydes c5-c11		44	0,0
2-hexanone	591-78-6		0,0
2,4-dimethylfuran	3710-43-8	96	0,0
triphenylphosphine oxide	791-28-6	278,09	0,0
tetrahydrofuran	109-99-9	72,11	0,0
stearamide	124-26-5	283,5	0,0
hexanoic acid	142-62-1	116	0,0
hexacosane	630-01-3	366,4	0,0
ethylene terephthalate cyclic tetramer	16104-96-4	768,67	0,0
ethylene carbonate	96-49-1	88,06	0,0
dodecane	112-40-3	170	0,0
cyclotetrasiloxane, octamethyl-	556-67-2	296,08	0,0
c[deg/pa/eg/pa] pa=phthalic acid deg=diethylen glycol eg=ethylen glycol		428,11	0.0
c[deg/pa/eg/pa/eg/pa] pa=phthalic acid deg=diethylen glycol eg=ethylen glycol		620,15	0,0
bis-gma / bisphenol a glycidylmethacrylate	1565-94-2	843,24	0,0
aldehydes c6-c12			0,0
2-propanol	67-63-0	60,1	0,0
2-heptanone	110-43-0		0,0
2,2'-(1,4-phenylene)bis[4H-3,1-benzoxazin-4-one]	18600-59-4	369	0,0
		000	
1-decanol, 2-hexyl-	2425-77-6		0,0
1-acetoxyacetone	592-20-1	116	0,0
unknown substance [m/z: 341.0, 208.0, 236.0]		0	0,0
succinic anhydride	108-30-5	100	0,0
p-toluic acid, 5-tridecyl ester		318,3	0.0
probable pet oligomer (dimer ether)		010,0	0,0
probable pet oligomer (cyclic dimer)			0,0
polyethyleneglycol (eo = 1-50) ethers of linear and branched primary (c 8-c 22)			
alcohols			0,0
p-cymene	99-87-6	134	0,0
octanal + d-limonene	124-13-0 + 59		0,0
	621-61-4		
octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester		358,3	
n-butylbenzenesulphonamide (n-butylbenzenesulfonamide)	3622-84-2	213,08	
myristic acid	544-63-8	228,38	
methyl hydroxyacetate	96-35-5		0,0
[eg/pa/eg/pa/eg] eg=ethylen glycol pa=phthalic acid			0,0
ketones c5-c8			0,0
		346,22	
hexyl 2-(1-hexoxy-1-oxopropan-2-yl)sulfanylpropanoate	00476 00 0		
hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	23470-00-0	330,28	
heptane, 2,2,4,6,6-pentamethyl-	13475-82-6	170	0,0
eucalyptol	470-82-6	154	0,0
ethylene (tere-,iso-)phthalate cyclic pentamer_pto	16104-97-5	960,21	0,0
ethoxylated bisphenol a diacrylate	64401-02-1	446,17	
· · · ·	55429-68-0		0,0
elcosanoic acid, 2-(acetyloxy)-1-[(acetyloxy)methyl]ethyl ester			
cyclohexasiloxane, dodecamethyl-	540-97-6	444,11	
carboxylic acids			0,0
carbonic acid, eicosyl vinyl ester	1000382-54-	368	0,0
caprylic acid	124-07-2	144,22	0,0
caprolactone	502-44-3	_ /-1,22	0,0
•		70.41	
butyraldehyde	123-72-8	72,11	
aldehydes c6-c9			0,0
acrylic acid, dodecyl ester	2156-97-0		0,0
3,3'-dimetoxy-benzidin	119-90-4	408,29	
2-octanone	111-13-7		0,0
	-		
2-ethylhexyl-acetate	103-09-3	172	
2-butanone	78-93-3		0,0
(m-z : 193.0-149.0-104.0-175.0); possible linear oligomer: terephathalic acid -			
			0,0
ethylene glycol			

substance	cas_nr	mw	occurence in output
citric acid, triethyl ester	77-93-0		0,05
4-formyl-benzonitrile	105-07-7	131	0,05
2-pentanone	107-87-9		0,05
2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene	7128-64-5	430	0,05
2,4-di-tert-butylphenol	96-76-4		0,05
1,3-dioxolane	646-06-0	74,08	0,05
solvent green 3	128-80-3	418,5	0,04
pet cyclic dimer	24388-68-9	384,08	0,04
palmitamide	629-54-9	255,44	0,04
methyl formate	107-31-3		0,04
ketones c5-c11			0,04
isophthalic acid	121-91-5		0,04
heptane	142-82-5	100	0,04
dioctyl adipate	123-79-5	370,31	0,04
dihydro-5-methyl-2(3h)-furanone	108-29-2	100	0,04
cyclopentasiloxane, decamethyl-	541-02-6	370,09	0,04
c[eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid			0,04
c[eg/pa/eg/pa/eg/pa] pa=phthalic acid eg=ethylene glycol			0,04
c[eg/pa/eg/pa/eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid			0,04
c[eg/pa/eg/pa/eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid			0,04
c[deg/pa/eg/pa/eg/pa/eg/pa] pa=phthalic acid eg=ethylene glycol deg=diethylene glycol			0.04
c[deg/pa/deg/pa] deg= diethylen glycol pa= phthalic acid			0,04
benzonitrile, 2-amino-	1885-29-6	118,05	0,04
benzoic acid, 4-methyl-, 2-hydroxyethyl ester	28129-15-9	180,08	0,04
aldehydes c5-c11		44	0,04
2-hexanone	591-78-6		0,04
2,4-dimethylfuran	3710-43-8	96	0,04
triphenylphosphine oxide	791-28-6	278,09	0,04
tetrahydrofuran	109-99-9	72,11	0,04
stearamide	124-26-5	283.5	0,04
hexanoic acid	142-62-1	116	0,04
hexacosane	630-01-3	366.4	0,04
ethylene terephthalate cyclic tetramer	16104-96-4	768,67	0,04
ethylene carbonate	96-49-1	88,06	0,04
dodecane	112-40-3	170	0,04
cyclotetrasiloxane, octamethyl-	556-67-2	296,08	0,04
c[deg/pa/eg/pa] pa=phthalic acid deg=diethylen glycol eg=ethylen glycol		428,11	0,04
c[deg/pa/eg/pa/eg/pa] pa=phthalic acid deg=diethylen glycol eg=ethylen glycol		620,15	0,04
bis-gma / bisphenol a glycidylmethacrylate	1565-94-2	843,24	0,04
aldehydes c6-c12	1000 0-12	0.10,2.1	0,04
2-propanol	67-63-0	60,1	0,04
2-heptanone	110-43-0		0,04
2,2'-(1,4-phenylene)bis[4H-3,1-benzoxazin-4-one]	18600-59-4	369	0,04
1-decanol, 2-hexyl-	2425-77-6		0,04
1-acetoxyacetone	592-20-1	116	0,04
unknown substance [m/z: 341.0, 208.0, 236.0]	552-20-1	0	0,03
succinic anhydride	108-30-5	100	0,03
p-toluic acid, 5-tridecyl ester	100-00-0	318,3	0,03
probable pet oligomer (dimer ether)		010,0	0,03
probable pet oligomer (cyclic dimer)			0,03
polyethyleneglycol (eo = 1-50) ethers of linear and branched primary (c 8-c 22)			0,00
alcohols			0,03
p-cymene	99-87-6	134	0,03
octanal + d-limonene	124-13-0 + 5		0,03
octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	621-61-4	358,3	0,03
n-butylbenzenesulphonamide (n-butylbenzenesulfonamide)	3622-84-2	213,08	0,03
myristic acid	544-63-8	228,38	0,03
methyl hydroxyacetate	96-35-5		0,03
[[eg/pa/eg/pa/eg] eg=ethylen glycol pa=phthalic acid			0,03
ketones c5-c8			0,03

ANNEX IV a : substances in output for technology configuration X1X2W				
substance	cas_nr	mw	occurence in output	
hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	23470-00-0	330,28	0,03	
heptane, 2,2,4,6,6-pentamethyl-	13475-82-6	170	0,03	
eucalyptol	470-82-6	154	0,03	
ethylene (tere-,iso-)phthalate cyclic pentamer_pto	16104-97-5	960,21	0,03	
ethoxylated bisphenol a diacrylate	64401-02-1	446,17	0,03	
eicosanoic acid, 2-(acetyloxy)-1-[(acetyloxy)methyl]ethyl ester	55429-68-0		0,03	
cyclohexasiloxane, dodecamethyl-	540-97-6	444,11	0,03	
carboxylic acids			0,03	
carbonic acid, eicosyl vinyl ester	1000382-54-3	368	0,03	
caprylic acid	124-07-2	144,22	0,03	
caprolactone	502-44-3		0,03	
butyraldehyde	123-72-8	72,11	0,03	
aldehydes c6-c9			0,03	
acrylic acid, dodecyl ester	2156-97-0		0,03	
3,3'-dimetoxy-benzidin	119-90-4	408,29	0,03	
2-octanone	111-13-7		0,03	
2-ethylhexyl-acetate	103-09-3	172	0,03	
2-butanone	78-93-3		0,03	
(m-z: 193.0-149.0-104.0-175.0); possible linear oligomer: terephathalic acid -			0.03	
ethylene glycol			0,03	
(m-z: 130.0-117.0-371.3-239.2)			0,03	

Functional Barrier 3rd Monitoring Program			
	onfiguratio	n V1V0	
ANNEX IVb: substances in output for technology of	-		
substance	cas_nr	mw	occurence_in output/100
benzene	71-43-2	78	0,93
2-methyl-1,3-dioxolane	497-26-7	88	0,91
acetaldehyde	75-07-0	44,05	0,81
acetic acid	64-19-7	60,05	0,69
terephthalic acid	100-21-0	166,13	0,61
pet oligomers	n.a	n.a	0,63
acetone	67-64-1	58	0,63
formic acid	64-18-6	46	0,58
ethyleneglycol	107-21-1	62,07	0,58
toluene	108-88-3	92	0,55
benzaldehyde	100-52-7	106,04	0,54
limonene	138-86-3	136	0,50
acetic acid, ethyl ester	141-78-6		0,50
styrene	100-42-5	104,15	0,47
tpa-eg oligomers	n.a	n.a	0,45
acetophenone	98-86-2	120	0,42
2,2-bis(4-hydroxyphenyl)propane	80-05-7	228,29	0,40
2-[2-hydroxy-3,5-bis(1,1-dimethylbenzyl)phenyl]benzotriazole	70321-86-7	447	0,39
2-pentyl-furan	3777-69-3	138	0,36
1,4-benzenedicarboxylic acid, bis(2-hydroxyethyl) ester	959-26-2	254,08	0,36
1,2-ethanediol, monoacetate	542-59-6	104	0,31
xylenes	n.a	106	0,30
aldehydes	n.a	n.a	0,29
albn	78-67-1	164	0,29
ketones	n.a	n.a	0,26
1,4-dioxane	123-91-1	88	0,26
butyrolactone	96-48-0	86	0,25
9,10-anthracenedione, 1,4-bis[(2-ethyl-6-methylphenyl)amino]-	41611-76-1		0,25
3-((12-acetoxyoctadecanoyl)oxy)propane-1,2-diyl diacetate	330198-91-9	500,34	0,25
1-pentanol	71-41-0	88,15	0,23
1.2-ethanediol, monoformate	628-35-3	90	0,23
terephthalic acid, bis(2-ethylhexyl)ester	6422-86-2		0,21
prob. dichloromethane	75-09-2	84	0,21
adipic acid, bis(2-ethylhexyl) ester	103-23-1	370	0,20
4-methyl-3-pentenoic acid	504-85-8	114	0,20
oxidized irgatos 168	95906-11-9	663	
d-limonene	5989-27-5	136,13	
bis(2-ethylhexyl) sebacate	122-62-3	427	
phosphorous acid, tris(2,4-di-tert-butylphenyl)ester	31570-04-4	646,94	
naphthalene	91-20-3	128	0,17
hydrocarbons	91-20-3	120	0,17
tpa-eg oligomers **			
	117 01 7	200.6	0,14
phthalic acid, bis(2-ethylhexyl) ester	117-81-7	390,6	0,14
3,6,13,16-tetraoxatricyclo[16.2.2.2(8,11)]tetracosa-8,10,18,20,21,23-hexaene		004.00	
2,7,12,17-tetrone	1000398-77-		0,14
furfural	98-01-1	96	
ethylbenzene	100-41-4	106	
ethanol	64-17-5	46,07	
cyclic[tpa+deg]2		479,46	
cyclic[tpa+eg]2+[ipa+eg]		598,11	
cyclic[tpa+eg]2+[ipa+deg]		634,81	0,13

substance	cas_nr	mw	occurence_in output/100
cyclic[tpa+eg]3+[ipa+eg]		768,17	0,12
cyclic[tpa+eg]+[tpa+deg]2		686,16	0,12
cyclic[tpa+eg]+[ipa+deg]		428,11	0,12
4(1h)-quinazolinone	491-36-1	146,05	0,12
linear[tpa+eg]2+deg		512,13	0,11
1-hydroxy-4-(p-toluidino)anthraquinone	81-48-1	329,11	0,11
phenol	108-95-2	94,11	0,10
oleamide	301-02-0	281,5	0,10
nonanal	124-19-6	142	0,10
linear[tpa+eg]2+eg		468,1	0,10
cyclopentanone	120-92-3	84	0,10
cyclic[tpa+eg]3+[ipa+deg]		480,31	0,10
1,2-ethanediol diformate	629-15-2	118	0,10
hexanal	66-25-1	100	0,09
cyclic[tpa+eg]4+[lpa+eg]		960,21	0,09
benzoic acid	65-85-0	122,12	0.09
2-ethyl-1-hexanol	104-76-7	130	0,09
octadecanoic acid, 2,3-bis(acetyloxy)propyl ester	33599-07-4	442,33	0,09
linear[tpa+eg]2		402.1	0,09
erucamide	112-84-5	337,59	0,09
cyclic[tpa+eg]4+[tpa+deg]	112 04 0	1.026,22	0,09
1.2-ethanediol, monobenzoate	94-33-7	166,06	0,09
palmitic acid	57-10-3	256,43	0,08
linear[tpa+eg]3+deg	0, 200	380,29	0,08
2,6-dimethyl-pyridine	108-48-5	107	0,08
1-stearoylglycerol (1-monostearin)	123-94-4	380,29	0,08
methacrylic acid, methyl ester	80-62-6	100,12	0,07
9-octadecenoic acid (z)-, 2,3-bis(acetyloxy)propyl ester	55401-64-4	100,12	0,07
isophthalaldehyde	626-19-7	134,04	0,07
bis(3,4-dimethylbenzylidene)sorbitol	135861-56-2	104,04	0,07
acetic acid, methyl ester	79-20-9		0,07
1-butanol	71-36-3	74,12	0,07
	623-27-8	134	
1,4-benzenedicarboxaldehyde	77-90-7	134	0,07
tri-n-butyl acetyl citrate stearic acid	57-11-4	284.40	0,06
	110-62-3	284,49	0,06
pentanal	110-02-3	450.00	0,06
nonylphenol ethoxylates (npeo5)		459,29	0,06
linear[tpa+eg]3	444 74 7	594,14	0,06
heptanal	111-71-7		0,06
decanal	112-31-2		0,06
carboxylic acid	1700.01.0	100.00	0,06
4(1h)-quinazolinone, 2-methyl-	1769-24-0	160,06	0,06
solvent blue 104	116-75-6	474,23	
linear[tpa+eg]3+eg		660,15	0,06
isopropyl myristate	110-27-0	270	0,06
hexamethyl cyclotrisiloxane	541-05-9		0,06
furan	110-00-9		0,06
dimethylsilanediol	1066-42-8		0,06
aldehydes c6-c10			0,06
2-propenal	107-02-8		0,06
2-butenal	4170-30-3		0,06
1-propene-1,2,3-tricarboxylic acid, tributyl ester	7568-58-3		0,06
1-hexadecanol	36653-82-4	242,45	0,06
a-methylstyrene	98-83-9		0,05
thiodipropionic acid, didodecyl ester	123-28-4	514,86	0,05

substance	cas_nr	mw	occurence_in output/100
phenol, 2,4-bis(1-methyl-1-phenylethyl)-	2772-45-4	330,2	0,05
pet cyclic trimer	7441-32-9	576,13	0,05
octadecanoic acid, 2-(acetyloxy)-1-[(acetyloxy)methyl]ethyl ester	55401-62-2		0,05
linear[tpa+eg]+deg		320,09	0,05
citric acid, triethyl ester	77-93-0		0,05
4-formyl-benzonitrile	105-07-7	131	0,05
2-pentanone	107-87-9		0,05
2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene	7128-64-5	430	0,05
2,4-di-tert-butylphenol	96-76-4		0,05
1,3-dioxolane	646-06-0	74.08	0,05
solvent green 3	128-80-3	418,5	0,04
pet cyclic dimer	24388-68-9	384,08	0,04
palmitamide	629-54-9	255,44	0,04
methyl formate	107-31-3	200,44	0,04
ketones c5-c11	107-51-5		0,04
	121.01.5		
Isophthalic acid	121-91-5 142-82-5	100	0,04
heptane disatul adiasta		100	0,04
dioctyl adipate	123-79-5	370,31	0,04
dlhydro-5-methyl-2(3h)-furanone	108-29-2	100	0,04
cyclopentasiloxane, decamethyl-	541-02-6	370,09	0,04
c[eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid			0,04
c[eg/pa/eg/pa/eg/pa] pa=phthalic acid eg=ethylene glycol			0,04
c[eg/pa/eg/pa/eg/pa]eg=ethylene glycol pa=phthalic acid			0,04
c[eg/pa/eg/pa/eg/pa/eg/pa/eg/pa] eg=ethylene glycol pa=phthalic acid			0,04
c[deg/pa/eg/pa/eg/pa/eg/pa] pa=phthalic acid eg=ethylene glycol deg=diethylene			
glycol			0,04
c[deg/pa/deg/pa] deg= diethylen glycol pa= phthalic acid			0,04
benzonitrile, 2-amino-	1885-29-6	118,05	0,04
benzoic acid, 4-methyl-, 2-hydroxyethyl ester	28129-15-9	180,08	0,04
aldehydes c5-c11		44	0,04
2-hexanone	591-78-6		0,04
2,4-dimethylfuran	3710-43-8	96	0,04
triphenylphosphine oxide	791-28-6	278,09	0,04
tetrahydrofuran	109-99-9	72.11	0,04
stearamide	124-26-5	283,5	0,04
hexanoic acid	142-62-1	116	0,04
hexacosane	630-01-3	366,4	0,04
	16104-96-4		0,04
ethylene terephthalate cyclic tetramer		768,67	
ethylene carbonate	96-49-1	88,06	0,04
dodecane	112-40-3	170	0,04
cyclotetrasiloxane, octamethyl-	556-67-2	296,08	0,04
c[deg/pa/eg/pa] pa=phthalic acid deg=diethylen glycol eg=ethylen glycol		428,11	0,04
c[deg/pa/eg/pa/eg/pa] pa=phthalic acid deg=diethylen glycol eg=ethylen glycol		620,15	0,04
bis-gma / bisphenol a glycidylmethacrylate	1565-94-2	843,24	0,04
aldehydes c6-c12			0,04
2-propanol	67-63-0	60,1	0,04
2-heptanone	110-43-0		0,04
2,2'-(1,4-phenylene)bis[4H-3,1-benzoxazin-4-one]	18600-59-4	369	0,04
1-decanol, 2-hexyl-	2425-77-6		0,04
1-acetoxyacetone	592-20-1	116	0,04
unknown substance [m/z: 341.0, 208.0, 236.0]		0	0,03
succinic anhydride	108-30-5	100	0,03
p-toluic acid, 5-tridecyl ester		318,3	0,03
probable pet oligomer (dimer ether)		010,0	0,03
probable pet oligomer (cyclic dimer)			0,03
			0,03
polyethyleneglycol (eo = 1-50) ethers of linear and branched primary (c 8-c 22) alcohols			0,03

ANNEX IVb: substances in output for technology c	onfiguratio	n Y1Y2	
substance	cas_nr	mw	occurence_in output/100
p-cymene	99-87-6	134	0,03
octanal + d-limonene	124-13-0 + 59	89-27-5	0,03
octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	621-61-4	358,3	0,03
n-butylbenzenesulphonamide (n-butylbenzenesulfonamide)	3622-84-2	213,08	0,03
myristic acid	544-63-8	228,38	0,03
methyl hydroxyacetate	96-35-5		0,03
l[eg/pa/eg/pa/eg] eg=ethylen glycol pa=phthalic acid			0,03
ketones c5-c8			0,03
hexyl 2-(1-hexoxy-1-oxopropan-2-yl)sulfanylpropanoate		346,22	0,03
hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	23470-00-0	330,28	0,03
heptane, 2,2,4,6,6-pentamethyl-	13475-82-6	170	0,03
eucalyptol	470-82-6	154	0,03
ethylene (tere-,iso-)phthalate cyclic pentamer_pto	16104-97-5	960,21	0,03
ethoxylated bisphenol a diacrylate	64401-02-1	446,17	0,03
eicosanoic acid, 2-(acetyloxy)-1-[(acetyloxy)methyl]ethyl ester	55429-68-0		0,03
cyclohexasiloxane, dodecamethyl-	540-97-6	444,11	0,03
carboxylic acids			0,03
carbonic acid, eicosyl vinyl ester	1000382-54-3	368	0,03
capitic acid	124-07-2	144,22	0,03
caprolactone	502-44-3		0,03
butyraldehyde	123-72-8	72,11	0,03
aldehydes c6-c9			0,03
acrylic acid, dodecyl ester	2156-97-0		0,03
3,3'-dimetoxy-benzidin	119-90-4	408,29	0,03
2-octanone	111-13-7		0,03
2-ethylhexyl-acetate	103-09-3	172	0,03
2-butanone	78-93-3		0,03
(m-z: 193.0-149.0-104.0-175.0); possible linear oligomer: terephathalic acid -			
ethylene glycol			0,03
(m-z: 130.0-117.0-371.3-239.2)			0,0

					X1X2W	¥1¥2
substances in the input	cas_nr	mol weight	occurrence in	position in Reg. (EU)	variation	variation
2-methyl-1,3-dioxolane	497-26-7	88,0	0,95	NIAS- covered by Art. 6(4)	-50,5	input/output % -40,1
acataldahuda	75-07-0	44.1	0.80	authorized without	31.6	70,1
				SML		
				6(4)		529,6
benzaldehyde	64-19-7 100-52-7	60,1	0,69	SML authorized without SML	-67,1	-26,1
formic acid	64-18-6	46,0	0,61	authorized without SML	74,7	-16,1
acetic acid, ethyl ester	141-78-6	88,1	0,60	authorized without SML	-55,3	-72,2
pet oligomers	n.a	n.a	0,59	Covered by the general safety requirements of Art. 3		
terephthalic acid	100-21-0	166,1	0,58	= 7.5 mg/kg (group restriction)	33,3	29,9
acetone	67-64-1	58,0	0,57	authorized without SML	229,9	-56,0
ethyleneglycol	107-21-1	62,1	0,57	authorized with SML = 30 mg/kg (group restriction)	-44,8	2,8
ethanol	64-17-5	46,1	0,57	authorized without SML	-98,5	-92,3
limonene	138-86-3	136,0	0,54	NIAS- covered by Art.	-94,6	-86,6
toluene	108-88-3	92,0	0,54	NIAS- covered by Art.	-88,4	-91,0
acetophenone	98-86-2	120,0	0,52	NIAS- covered by Art.	-73,3	-62,9
2-pentyl-furan	3777-69-3	138,0	0,52	NIAS- covered by Art.	-76,5	-60,2
	96-48-0			NIAS- covered by Art.		23,7
tpa-eg oligomers	n.a	n.a	0,45	6(4) Covered by the general safety requirements of Art.		
phosphorous acid, tris(2,4-di-tert-butylphenyl)ester	31570-04-4	646,9	0,40	authorized without SML	-54,0	-81,9
aibn	78-67-1	164,0	0,40	6(4)	-83,8	-88,5
oleamide	301-02-0	281,5	0,40	SML	-99,6	-86,9
xylenes	n.a	106,0	0,39	6(4)	-95,3	-82,5
styrene	100-42-5	104,2	0,39	SML	-30,0	-33,0
oxidized irgafos 168 2,2-bis(4-hydroxyphenyl)propane (BPA)	80-05-7	228,3	0,37	6(4) The intentional use of BPA in food contact materials will be prohibited by a forthcoming Regulation that will amend Reg. 10/2011.	-7,1	-53,5
2-[2-hydroxy-3,5-bis(1,1-dimethylbenzyl)phenyl]benzotriazole	70321-86-7	447,0	0,37	authorized with SML = 1.5 mg/kg	269,2	-8,8
2-ethyl-1-hexanol	104-76-7	130,0	0,34	= 30 mg/kg	-98,2	-97,8
1,4-benzenedicarboxylic acid, bis(2-hydroxyethyl) ester (BHET)	959-26-2	254,1	0,33	NIAS- covered by Art. 6(4) NIAS- covered by Art.	-23,3	1,9 -95,6
				6(4) NIAS- covered by Art.		-23,4
a/z-exhaneolog, monoacetate	n.a	104,0		6(4) Depending on the specific chemical formula, they can be covered by Art. 6(49 as NIAS	-33,1	-63,4
ketones	n.a		0,29	Depending on the specific chemical formula, they can be covered by Art. 6(49 as NIAS	141,1	-87,7
1-pentanol	71-41-0	88,2	0,28	authorized without SML	109,8	-22,8
terephthalic acid, bis(2-ethylhexyl)ester	6422-86-2	390,6	0,22	authorized with SML = 60 mg/kg (group restriction)	-22,3	-79,0
phthalic acid, bis(2-ethylhexyl) ester	117-81-7	390,6	0,17	authorized with SML = 0.6 mg/kg (group restriction)- Only to be used as: (a) plasticiser in repeated use materials and	-93,3	-69,7
	2-methyl-1,3-dioxolane acetaldehyde benzene acetic acid benzaldehyde formic acid acetic acid, ethyl ester pet oligomers terephthalic acid acetone ethyleneglycol ethanol limonene toluene acetophenone 2-pentyl-furan butyrolactone tpa-eg oligomers phosphorous acid, tris(2,4-di-tert-butylphenyl)ester aibn oleamide xylenes styrene oxidized irgafos 168 2,2-bis(4-hydroxyphenyl)propane (BPA) 2-lethyl-1-hexanol 1,4-benzenedicarboxylic acid, bis(2-hydroxyethyl) ester (BHET) bis(2-ethyl-nexyl) sebacate 1,2-ethanediol, monoacetate aldehydes i-pentanol terones -pentanol	2A P2rethyl-1,3-dioxolane457.267acetaldehyde75.07.0benzene71.43.2acetic acid64.19.7benzaldehyde100.52.7formic acid64.19.6acetic acid, ethyl ester101.78.6pet oligomersn.aacetone67.64.1ethyleneglycol107.21.1ethonol64.17.5imonene138.86.3acetophenone98.86.222.pentyl-furanbutyrolactone96.48.0phosphorous acid, tris(2.4-di-tert-butylphenyllyester31570.64.4ain7.86.7.1styrene100.21.2avidesi 16895006.11.92,2-bis(4-hydroxyphenyl)propane (BPA)60.05.72(2-hydroxy-3,5-bis(1,1-dimethylbenyl)phenylbenzotriazole70321.86.72,2-bis(4-hydroxyphenyl)propane (BPA)10.42.6.2alchenel2.2.6.2.3alchendol, monacetate542.59.2alchendol, monacetate542.59.2alchendol, monacetate542.59.2alchendol, bis(2-thylhenyl)estern.a1,2-ethanediol, monacetate542.59.2alchendol, bis(2-thylhenyl)ester622.86.2alcendol542.59.2alcendol542.59.2alcendol542.59.2alcendol542.59.2alcendol542.59.2alcendol542.59.2alcendol542.59.2alcendol542.59.2alcendol542.59.2alcendol542.59.2alcendol<	2 methyl-1,3-diozolane88,02 methyl-1,3-diozolane497.26788,0acetia dehyde75.07.044,1benzene71.43.272,0acetic acid64.19.760,1benzaldehyde100.52.7106,0formic acid64.18.644.0acetic acid, ethyl exter101.21.088,1pet oligomersn.an.aterephthalic acid100.21.0106,1acetone67.64.158,0ethylenegiycol67.64.158,0toluene138.86.3136,0toluene138.86.3132,0acetone88.62.2120,0pentyl-furan377.76.93138,0butyrolactone98.46.2120,0pentyl-furan31570.44646,9atom78.67.1164,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.67.1106,0atom78.71.1 </td <td>automatical in the impurecall, orindex and impureindex and impure2 methyl 1,3 diacolane327-267\$4.80\$0.35acetaldehyde75-07-0\$4.81\$0.61banzadehyde64-19-7\$6.60\$0.61banzadehyde64-19-7\$1.60\$0.61aceta cid64-19-7\$1.60\$0.61aceta cid64-19-7\$1.60\$0.61aceta cid, ethyl eter\$1.174\$1.62\$0.61aceta cid, ethyl eter\$1.174\$1.62\$0.61aceta cid, ethyl eter\$1.272\$1.66\$0.61aceta cid, ethyl e</td> <td>animaterialcan anymaterial an</td> <td>Jonder in rightQueryQuer</td>	automatical in the impurecall, orindex and impureindex and impure2 methyl 1,3 diacolane327-267\$4.80\$0.35acetaldehyde75-07-0\$4.81\$0.61banzadehyde64-19-7\$6.60\$0.61banzadehyde64-19-7\$1.60\$0.61aceta cid64-19-7\$1.60\$0.61aceta cid64-19-7\$1.60\$0.61aceta cid, ethyl eter\$1.174\$1.62\$0.61aceta cid, ethyl eter\$1.174\$1.62\$0.61aceta cid, ethyl eter\$1.272\$1.66\$0.61aceta cid, ethyl e	animaterialcan anymaterial an	Jonder in rightQueryQuer

Annex V: Most occurring substances

Annex VI: Summary of testing methods

-			•							
VOLATILE SUBSTANCES	Data									
Laboratory	Company	LAB 1	LAB 2	LAB 3	LAB 4	LAB 5	LAB 6	LAB 7	LAB 8	LAB 9
Sample	Date of Arrival	06/03/2024	08/03/24	11/03/2024	06/03/2024	06/03/2024	06/03/2024	14/03/2024	06/03/2024	20/03/2024
Grinding	Make	Biometa tecnologia y sistemas S.A.	Retsch	1	SPEX	cryogenic mill	IKA	IKA	Retsch	RETSCH
	Model	ZM2000	ZM300) /	6875 freezer/mill	CryoMill Retsch		A 11 B S000	ZM 200	ZM200 Ultra Centrifugal Mill 0.5 mm
	Temp (°T)	-200	maximum 20	1	≈-196	- 196			cooled to: -196	
	Coolant	Nitrogen	dry ice		Liquid nitrogen	liquid nitrogen	Liquid Nitrogen		Liquid Nitroger	1 0
Instrument	Chromatograph Model	Thermo Fisher Scientific	GC 8890	QP2010	7890B	7890A Agilent	7890B	8890-G3542A	7890E	
	Chromatograph Make	-	Agilent		Agilent	Agilent	Agilent	Agilent	Agilent Technologies	
	Detector1 Model	Thermo Fisher Scientific	5977B	QP2010	FID	GC 7000 MS Triple Quad	5977B	5977B-G7081B	5977E	MS 5977B
	Detector1 Make	-	Agilent	Shimadzu	Agilent	Agilent	Agilent	Agilent	Agilent Technologies	Agilent
	Detector2 Model		١		0	GC 7000 MS Triple Quad				
	Detector2 Make		١		0	Agilent				
	Chromatographic Column	(5%-phenyl)- methylpolysiloxane	DB 624	J&W DB-624 Ultra Inert GC Column, 30 m, 0.25 mm, 1.40 um.	DB-1, 30m x 0.25 mm x 0.25 μm	DB624 Agilent	Restek Rtx-5MS	VF-624ms (30 m, 0.25 mm, 1.40 μm)	Restek Rtx-200	HP-5 MS 30 m x 0.25 mm x 0.25 μm
	Extraction Technique	Thermal desorption	thermal desorption in headspace vial		Multi-headspace extraction	SPME	HS	Head space	Dynamic headspace	
	Extraction Time (h)	1	1	1	3	0.5	1	1	1	0.33
	Extraction Temperature (°C)	100	200	120	90	65	200	200	150	120
Test Conditions	Range of Mass Acquisition	20-400	35-450	29-300	0	30-600 mz			33-550	
	Internal Standard	Toluene	Styrene Deuterated D8	Pentyl benzene	0	Benzene - d 6	Mix of volatiles	Chlorobenzene (CAS No. 108-90-7)	Styrene-d8	NO
Performances	Sensitivity1	150	30 µg/kg		0	0.01	10 0		10 ppt	
Identification of Compounds	Library	NIST	VOCsMXNSC (internal database); NIST11; NIST17, WILEY275		0	NIST	NIST	NIST17 and Internal Library	NIST17, in-house libraries	NIST 20

Testing laboratories and relevant methods of analysis for volatile substances

Testing laboratories and relevant methods of analysis for semi-volatile substances

SEMI VOLATILE SUBSTANCWS										
Laboratory	Company	LAB1	LAB 2	LAB 3	LAB 4	LAB 5	LAB 6	LAB 7	LAB 8	LAB 9
Sample	Date of Arriva	06/03/2024	08/03/2024	11/03/2024	06/03/2024	06/03/2024	13/03/2024	14/03/2024	06/03/2024	20/03/202
Grinding	Make	sistemas S.A.	Retsch		SPEX	cryogenic mill				
	Model			/	6875 freezer/mill	í í				ZM200 Ultra Centrifugal Mi 0.5 mr
	Temp				≈-196	- 196			cooled to: -196	
	Coolant		dry ice		Liquid nitrogen	liquid nitrogen		Liquid Nitroger		
Instrument	Chromatograph Model				G3540A	7890A Agilent				
	Chromatograph Make		Agilent	Agilent	Agilent	Agilent				
	Detector1 Model		G7039A	TQ7000E	5977B GC/MSD	GTC premier Tof Waters			5975C	
	Detector1 Make		Agilent	Agilent	Agilent	Waters		Agilent	Agilent Technologies	Agiler
	Detector2 Mode		١		FID	GTC premier Tof Waters				
	Detector2 Make		١		Agilent	Waters				
	Chromatographic Column	(5%-phenyl) methylpolysiloxane	DB-5ms	Column DB-5 30m, 0.25mm, 0.25µm		HP5-MS	Rxi-1HT	HP-5MS UI (30 m, 0.25 mm, 0.25 μm)		HP-5 MS 30 m x 0.25 mm x 0.25 µm
Extraction Conditions	Extraction Solvent	Hexane/Ethanol 3:1	Dichloromethane	Dichloromethane	Dichloromethane	Dichloromethane and Acetonitrile	Dichloromethane	Acetonitrile	Dichloromethane	
	Type of Contact		immersion	1	Solid-liquid extraction	Soxhlet	ultrasonic bath	Total immersion	Liquid extraction by shaking	HS-SPM
	Sample Weight (gr)	1.5	1	2	1	15		1	5	1,
	Solvent Volume (ml)		15	10	15			10	50	
	Time of Contact (h)	8	8	2	24			1	1	0,3
	Temperature of Contact (°T)	20	70	60	40	100	60	60	30	12
Test Conditions	Range Of Mass Acquisition	25-300	35÷1000	30-550	30-800	60-800 mz	33-750 amu	45-700	33-550	45-45
				d5-Chlorobenzene,B21-	MOSH/MOAH Standard 150-				Phenol-d5, n- Butylphthalimide, 1-	
	Internal Standard	-	4,4-difluorobiphenyl	BHT,D10-fenantrene	600 µg/mL	Benzofenone	Methyl Heptadecanoate	131-16-8)	Fluoronaphthalene	NO
									Semi-quantification using an	
	Quantification	Toluene	N	/	semi quantitative via FID	N/A	ND	Semi-quantification	internal standard	not specified
Performances	Sensitivity1	100	100 µg/Kg	0,1	autotune	0.01	200	1000	10 ppb	not specified
Identification of Compounds			SVOCsMXNSC (internal database); NIST11; NIST17,							
	Library	NIST	WILEY275	NIST v2,4 25 March 2020	NIST	NIST	ND	NIST17 and Internal library	NIST17, in-house libraries	NIST 20

Testing laboratories and relevant methods of analysis for non-volatile substances

								1		
NON_VOLATILE SUBSTANCES										
Laboratory	Company	LAB1	LAB 2	LAB 3	LAB 4	LAB 5	LAB 6	LAB 7	LAB 8	LAB 9
Sample	Date of Arrival	06/03/2024	08/03/2024	11/03/2024	06.03.2024	06/03/2024	13/03/2024		06/03/2024	20/03/2024
	Client Sample Reference Number		Sheet 1	Sheet 2	Sheet 2	Sheet 2	Sheet 2	Sheet 1	Sheet 2	
	Laboratory Sample Reference Number		24.509868_1-2-3	QC240005.01	141102-3/24/TYC	Reference 2	216-OU-24	24LD00844	Reference 2	Reference 2
	Date of Analysis Start	11/03/2024	08/03/2024	13/03/2024	26.03.2024	07/03/2024	18/03/2024	20/03/2024	08/03/2024	21/03/2024
	Date of Report	09/04/2024	22/04/2024	05/04/2024	30.03.2024	05/04/2024	18/03/2024	04/04/2024	26/03/2024	27/03/2024
Grinding	Make	Biometa tecnologia y sistemas S.A.	Retsch	/	SPEX	cryogenic mill	IKA			
	Model	ZM2000	ZM300	/	6875 freezer/mill	CryoMill Retsch	A 11 B S000		ZM 200	ZM200 Ultra Centrifugal Mil 0.5 mm
	Temp			/	≈-196		-196		cooled to: -196	
	Coolant		dry ice	1	Liquid nitrogen	liquid nitrogen	Liquid Nitrogen	liquid nitrogen		Liquid nitroger
Instrument	Chromatograph Model		Vanquish	Nexera X2	1260 Infinity II	Xevo G2-XS Qtof Waters	HPLC			Acquity Xevo
	Chromatograph Make		Thermo Fisher	Shimadzu	Agilent	Waters	Shimadzu	SHIMADZU	J Agilent	Waters
	Detector1 Model	Waters	Orbitrap Exploris 120	TripleTOF4600	6546 LC/Q-TOF	Qtof Waters	LCMS (8045)			Xevo G2 QTOF
	Detector1 Make		Thermo Fisher	Sciex	Agilent	Waters	Shimadzu	AB SCIEX		Waters
	Detector2 Model				0	Xevo G2-XS Qtof Waters			1290 Infinity II DAD	
	Detector2 Make				0	Waters			Agilent	
	Chromatographic Column	C18, 1.6um x 2.1 mm x 100mm	Aquity UPLC HSS T3-C18	Kinetex EVO C18 150x21 mmm 2,6 um		ACQUITY UPLC BEH C18 Column, 130Å, 1.7 μm, 2.1 mm X 50 mm, 1/pk	Raptor C18 2.7 µm 100 x 2.1 mm	Kinetex 2.6 µm EVO C18 50 x 2.1mm		Acquity UPLC BEH C18 17 µm particle size (2.1 mm) 100 mm
Extraction Conditions	Extraction Solvent	Hexane/Etanol 3:1	Dichloromethane	Acetonitrile	Acetonitrile	Dichloromethane and Acetonitrile	Dichloromethane	Acetonitrile	e Acetonitril	1,1,1,3,3,3 hexafluoroisopropano (HFIP)/ Methano
	Type of Contact	Immersion	immersion	1	Solid-liquid extraction	Soxhlet extraction	ultrasonic bath	Total immersion	1 Ultrasonification	Total dissolution
	Sample Weight (gr)	1.5	1	2	1	15	0.3	1	1	0,4
	Solvent Volume (ml)	15	15	10	15	250	5	10	10	4 mL HFIP and 10 mL MeOH
	Time of Contact (h)	8	8	2	24		6	1	1	24
	Temperature of Contact (°C)	20	70	60	60	100	60	60	70	
Test Conditions	Range of Mass Acquisition	70-1000	70÷1000	20-1200	50-1700	50-1200 m/z	50-750		70-1200	50-1200
	Polarity	Positive and negative	POS/NEG	pos and neg	ESI+	ESI + and ESI -	POS AND NEG			
	POS Internal Standard	Benzyl butyl phthalate	Benzyl butyl phthalate- 3,4,5,6-d4	relative compounds	Reserpina, Pyraclostrobin, Acetmiprid	Diallyl phthalate		7	- Otylisothiazolinon, Dilauryl thiodipropionate	Leucine Enkephalir
	NEG Internal Standard	Nimesulide	Nimesulide	relative compounds	n.a.	Bisphenol A	TPA for oligomers semi- quantification	Taurocholic acid (CAS No. 81-24-3		not defined
Performances	Sensitivity1	100	100 µg/Кg	100 ug/kg	references masses	0.01	ND			MS ^E mode
Identification of Compounds I	Library	Internal	NVOCsMXNS-C and NVC	Internal library	PCDL (in-house library)	ITENE	-	NIST 2017 and Internal	Sciex E&L libraries, in-h	not defined